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 Fundamental Theory of Piezotronics 
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T Due to polarization of ions in crystals with noncentral symmetry, such as ZnO, 
GaN, and InN, a piezoelectric potential  ( piezopotential )  is created in the crystal 
when stress is applied. Electronics fabricated using the inner-crystal piezopo-
tential as a gate voltage to tune or control the charge transport behavior across 
a metal/semiconductor interface or a p–n junction are called piezotronics. This 
is different from the basic design of complimentary metal oxide semiconductor 
(CMOS) fi eld-effect transistors and has applications in force and pressure 
triggered or controlled electronic devices, sensors, microelectromechanical 
systems (MEMS), human-computer interfacing, nanorobotics, and touch-pad 
technologies. Here, the theory of charge transport in piezotronic devices is 
investigated. In addition to presenting the formal theoretical frame work, ana-
lytical solutions are presented for cases including metal–semiconductor contact 
and p–n junctions under simplifi ed conditions. Numerical calculations are 
given for predicting the current–voltage characteristics of a general piezotronic 
transistor: metal–ZnO nanowire–metal device. This study provides important 
insight into the working principles and characteristics of piezotronic devices, as 
well as providing guidance for device design. 
  1. Introduction 

 Piezoelectric materials have a wide range of applications in sen-
sors, actuators, and energy harvesting. The most well-known 
piezoelectric materials are Pb(Zr, Ti)O 3  and quartz. The insu-
lating and non-semiconductive nature of these materials limits 
their applications in electronic and photonic devices. Recently, 
much attention has been focused on piezoelectric semicon-
ductor materials in the wurtzite family, including ZnO, GaN, 
InN, and CdS. [  1–7  ]  Due to the coupling of piezoelectric and 
semiconducting properties, nano- and microwires of piezoelec-
tric semiconductors have been used as basic building blocks 
for fabricating innovative devices, such as nanogenerators, [  8–10  ]  
piezoelectric fi eld-effect transistors, [  11  ]  piezoelectric diodes, [  12  ]  
piezoelectric chemical sensors, [  13  ]  and piezo-phototronic 
devices. [  14  ,  15  ]  Furthermore, based on the piezoelectric-semicon-
ductor properties, a new fi eld of piezotronics has been created, 
which uses the effect of the piezoelectric potential created in 
the crystal for controlling or tuning the charge carrier transport 
characteristics to fabricate mechanical electronic devices, with 
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potential applications in microelectrome-
chanical systems, nanorobotics, human–
computer interfacing, and sensors. [  16  ]  

 An example is the ZnO nanowire. 
When a tensile strain is applied along the 
nanowire that grows in the  c -axis direc-
tion, piezoelectric charges are created 
at the two ends, forming a piezoelectric 
potential inside the nanowire. This poten-
tial tunes the contact of the nanowire 
with the electrodes by changing the height 
of the local Schottky barrier, and, thus, the 
transport behavior of the charge carriers 
in the nanowire is controlled and tuned 
by the externally applied strain. This is 
the piezotronic effect. The core of piezo-
tronic devices is to utilize the dynamically 
applied strain to achieve unique mechan-
ical-electronic actions. 

 Based on the piezoelectric theory and 
fi nite element method (FEM), we have 
previously calculated the piezopotential in 
a strained ZnO nanowire. [  17  ]  Furthermore, 
considering free carriers in the ZnO crystal, the distribution of 
piezopotential and carriers have been investigated at thermal 
equilibrium. [  18  ]  These theoretical works have provided a clear 
description of the distribution of the piezopotential inside a 
nanowire, but the dynamic transport properties of the car-
riers in the piezoelectric semiconductor nanowires cannot be 
described by the static model. 

 Here, we present a fundamental theoretical framework of 
piezotronics for understanding and quantitatively calculating 
the carrier transport behavior in the devices. We fi rst give ana-
lytical solutions for ZnO piezoelectric p–n junctions and metal–
semiconductor (M–S) contact under simplifi ed conditions, 
which are useful for understanding the piezotronic behavior 
in general. Furthermore, using the FEM, the characteristics of 
a piezotronic transistor ZnO nanowire metal–semiconductor–
metal (M–S–M) structure are simulated. The theoretical results 
establish the basic physics for understanding the observed 
experimental results from piezotronic devices and guiding 
future device design. 

   2. Basic Principle of the Piezotronic Transistor 

 To illustrate the piezotronic transistor, we begin with a tradi-
tional metal oxide semiconductor fi eld-effect transistor (MOS 
FET). For an n-channel MOS FET ( Figure    1  a), the two n-type 
doped regions are the drain and source; a thin insulator oxide 
layer is deposited on the p-type region to serve as the gate 
1wileyonlinelibrary.com
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    Figure  1 .     Schematic of a) an n-channel MOS FET and b) a semiconductor 
nanowire FET. Schematic of a piezotronic transistor with tensile strain 
(c) and compressive strain (d), where the gate voltage that controls the 
channel width is replaced by a piezopotential that controls the transport 
across the M–S interface.  
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oxide, on which a metal contact is made as the gate. The cur-
rent fl owing from the drain to source under an applied external 
voltage  V  DS  is controlled by the gate voltage  V  G , which controls 
the channel width for transporting the charge carriers. Analo-
gously, for a single-channel FET fabricated using a semicon-
ductor nanowire (Figure  1 b), the drain and source are the two 
metal electrodes at the two ends, and a gate voltage is applied 
at the top of the nanowire or through the base substrate. The 
working principle of the FET is to use an externally applied 
gate voltage to control the channel width, thus, controlling the 
charge transport properties.  

 A piezotronic transistor is a metal–nanowire–metal structure, 
such as Au–ZnO–Au or Ag–ZnO–Ag, as shown in Figure  1 c,d. 
The fundamental principle of the piezotronic transistor is to con-
trol the carrier transport at the M–S interface using a tuning at the 
local contact by creating a piezopotential at the interface region in 
the semiconductor by applying a strain. This structure is different 
from the complimentary metal oxide semiconductor (CMOS) 
design as described in the following. First, the externally applied 
gate voltage is replaced by an inner crystal potential generated 
by the piezoelectric effect, thus eliminating the “gate” electrode. 
This means that the piezotronic transistor only has two leads: the 
drain and source. Second, control over channel width is replaced 
by control at the interface. Since the current transported across 
a M–S interface is the exponential of the local barrier height in 
the reversely biased case, the on–off ratio can be rather high due 
to the non-linear effect. Finally, a voltage-controlled device is 
replaced by an external strain- or stress-controlled device, which 
is likely to have complimentary applications to CMOS devices. 
© 2011 WILEY-VCH Verlag Gmwileyonlinelibrary.com
 When a ZnO nanowire device is under strain, there are two 
typical effects that may affect the carrier transport process. One 
is the piezoresistance effect because of the change in bandgap, 
charge carrier density, and, possibly, the density of states in the 
conduction band of the semiconductor crystal under strain. 
bH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–10
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This effect is a symmetric effect on the two-end contact, has no 
polarity, and will not produce the function of a transistor. Pie-
zoresistance is a common feature of any semiconductor, such as 
Si or GaAs, and is not limited to the wurtzite family. The other 
is the piezoelectric effect because of the polarization of ions in 
a crystal with noncentral symmetry, which has an asymmetric 
or non-symmetric effect on the local contacts at the source and 
drain due to the polarity of the piezopotential. In general, the 
negative piezopotential side raises the barrier height at the local 
contact of a metal n-type semiconductor, possibly changing 
an Ohmic contact to a Schottky contact, a Schottky contact to 
“insulator” contact. The positive piezopotential side lowers the 
local barrier height, changing a Schottky contact to an Ohmic 
contact. The degree of change in the barrier heights depends 
on the doping type and doping density in the nanowire. The 
piezoelectric charges are located at the ends of the wire, and 
thus directly affect the local contacts. The piezotronic effect is 
likely limited to the wurtzite family, which includes ZnO, GaN, 
CdS, and InN. It is important to note that the polarity of the 
piezopotential can be switched by changing tensile strain to 
compressive strain. Thus, the device can be changed from a 
control at source to a control at drain simply by reversing the 
sign of strain applied to the device. [  16  ]  

   3. Theoretical Framework for the Piezotronic Effect 

 Since a piezotronic transistor involves a semiconductor that is 
piezoelectric, the fundamental governing equations for both 
semiconductor and piezoelectric theories are required. The 
basic equations for piezotronics are electrostatic equations, 
current density equations, and continuity equations, which 
describe the static and dynamic transport behavior of the charge 
carriers in semiconductors, [  19  ]  as well as the piezoelectric equa-
tions, which describe the piezoelectric behavior of the material 
under dynamic strain. [  20  ]  

 The Poisson equation is the basic equation for describing the 
electrostatic behavior of charges

 
∇2R i = −

D(�r )

gs   
(1)   

where  Ri    is the electric potential distribution,  D(�r )   is the charge 
density distribution, and  gs    is the permittivity of the material. 

 The current-density equations that correlate the local fi elds, 
charge densities, and local currents are

 

{ Jn = q:nnE + q Dn∇n

Jp = q:p pE − q Dp∇ p

Jcond = Jn + Jp   

(2)

   

where  Jn    and  Jp   are the electron and hole current densities,     q  
is the absolute value of the unit electronic charge,   μ   n     and   μ   p     are 
the electron and hole mobilities,  n     and  p     are the concentrations 
of free electrons and free holes,  D  n     and  D  p     are the diffusion 
coeffi cients for electrons and holes,  E    is the electric fi eld, and 
 Jcond    is the total current density. 

 The charge transport driven by a fi eld is described by the 
continuity equations
© 2011 WILEY-VCH Verlag GmAdv. Mater. 2011, XX, 1–10
 

{
∂n
∂t = Gn − Un + 1

q ∇ Jn

∂p
∂t = Gp − Up − 1

q ∇ Jp
  

(3)

   

where  G  n     and  G  p     are the electron and hole generation rates and 
 U  n     and  U  p     are the recombination rates. 

 The piezoelectric behavior of the material is described by a 
polarization vector   P  . For a small uniform mechanical strain 
 S jk  , [  21  ]  the polarization   P   vector is given in terms of strain   S   as

 (P)i = (e)i j k(S) j k   (4)   

where the third order tensor  (e)i j k    is the piezoelectric tensor. 
According to the conventional theory of piezoelectricity and 
elasticity, [  20  ,  22  ]  the constituter equations can be written as

 

{F = cES − eTE
D = eS + kE

  
(5)   

where   σ   is the stress tensor,  E    is the electric fi eld,  D    is the 
electric displacement,  cE    is the elasticity tensor, and  k   is the 
dielectric tensor. 

   4. Analytical Solution for 1D Simplifi ed Cases 

 In practical device modeling, the basic equations presented can 
be solved under specifi c boundary conditions. To simply illus-
trate the basic physics, we consider a 1D piezotronic device 
with ideal Ohmic contacts at the source and drain. This means 
that the Dirichlet boundary conditions of the carrier concentra-
tion and electrical potential will be applied at the device bound-
aries. [  19  ]  The strain is applied normal to the M–S interface 
without introducing shear strain. 

  4.1. Piezoelectric p–n Junctions 

 The p–n junctions are the most fundamental building blocks in 
modern electronic devices. The Shockley theory provides a basic 
theory of the current–voltage ( I – V ) characteristics of p–n junc-
tions. For a better understanding of a piezoelectric p–n junction, 
we describe the physics of the semiconductor using the Shockley 
theory. [  19  ]  For simplicity, we assume that the p-type region is 
non-piezoelectric and n-type region is piezoelectric. Considering 
that ZnO grows along the direction of  c -axis, the positive charges 
are created at the n-type side of the p–n junction by applying 
a compressive stress along the  c -axis. From convenience piezo-
electric theory, the piezoelectric charges are considered as sur-
face charges at the bulk piezoelectric material because the region 
within which the piezoelectric polarization charges distribute is 
much smaller than the volume of the bulk crystal, making it rea-
sonable to assume that the piezoelectric charges are distributed 
at a surface of zero thickness. However, such an assumption 
is not valid for nanodevices or even microdevices. We assume 
that the piezoelectric charges distribute at the interface of a p–n 
junction within a width of  W  piezo  ( Figure    2  a),  

 We use an abrupt junction model, in which the impu-
rity concentration in a p–n junction changes abruptly from 
acceptor  N  A  to donor  N  D , as shown in Figure  2 a. The electrons 
and holes in the junction region form a charge depletion zone, 
which is assumed to have a box profi le. We fi rst calculate the 
3bH & Co. KGaA, Weinheim wileyonlinelibrary.com
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    Figure  2 .     Piezoelectric p–n junction with the presence of piezoelectric 
charges at applied voltage  V   =  0 (thermal equilibrium). a) Piezoelectric 
charges and acceptor and donor charge distribution. b) Electric fi eld, 
c) potential distribution, and d) energy band diagram with the presence 
of piezoelectric charges. Dashed lines indicate the electric fi eld, potential, 
and energy band in the absence of piezoelectric charges, and the solid lines 
indicate the cases when a piezopotential is present at the n-type side.  
electric fi eld and potential distribution inside the p–n junction. 
For a 1D device, the Poisson equation  (Equation (1) ) may be 
reduced to

 

−d2Ri

dx2
=

d E

dx
=

D(x)

g s

=
1

g s

[
q ND(x) − qn(x) − q NA(x)

+ q p(x) + qDpiezo(x)
]

  
(6)

    
 where  N  D ( x ) is the donor concentration,  N  A ( x )    is the acceptor 
concentration, and   ρ   piezo ( x ) is the density of polarization charges 
(in units of electron charge).  W  Dp     and  W  Dn     are defi ned as the 
depletion layer widths in the p-side and the n-side, respectively. 
The electric fi eld is then obtained by integrating the above equa-
tions, as shown in Figure  2 b,

 
E (x) = − q NA(x + WDp)

gs
, for−WDp ≤ x ≤ 0

  
(7a)

   

 

E (x) = −
q

[
ND(WDn − x) + Dpiezo(Wpiezo − x)

]
g s

,

for 0 ≤ x ≤ Wpiezo   (7b)   
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E (x) = −q ND

gs
(WDn − x), for Wpiezo ≤ x ≤ WDn

  
(7c)

    
 The maximum fi eld  E  m  that exists at  x   =  0 is given by

 
| Em| =

q (NDWDn + DpiezoWpiezo)

gs   
(8)    

 The potential distribution  Ri (x)   is, as shown in Figure  2 c,

 
R i (x) =

q NA(x + WDp)2

2gs
, for −WDp ≤ x ≤ 0

  
(9a)   

 

R i (x) = R i (0) + q

gs
[ND(WDn − x

2)
x

+ Dpiezo Wpiezo − x
2

x], for 0 ≤ x ≤ Wpiezo( )   
(9b)

   

 

R i (x) = R i (Wpiezo) − q ND

gs
WDn − Wpiezo

2
Wpiezo

+q ND

gs
(WDn − x

2
x, for Wpiezo ≤ x ≤ WDn)

( )

  
(9c)

    
 Thus, the built-in potential  Rbi   is given by

 
Rbi = q

2gs
(NAW2

Dp +DpiezoW2
piezo + NDW2

Dn)
  

(10)
    

  Equation (10)  presents the change in built-in potential as a 
result of the piezoelectric charges due to tensile or compres-
sive straining, which defi nes the sign of the local piezoelectric 
charges. It is apparent that the piezopotential can change the 
semiconductor energy band relative to Fermi level. 

 Next, we analyze the current–voltage characteristics of a 
piezoelectric p–n junction by using the Shockley theory, which 
models an ideal junction based on four assumptions: 1) a piezo -
electric p–n junction has an abrupt depletion layer; 2) piezo-
electric semiconductors are nondegenerate so that the Boltz-
mann approximation applies; 3) the injected minority carrier 
concentration is smaller than the majority carrier concentration 
so the low injection assumption is valid; and 4) no generation-
recombination current exists inside the depletion layer and the 
electron and hole currents are constant throughout the p–n 
junction. If the width of the piezocharges is much less than the 
width of the depletion zone, e.g.,  W  piezo   <  <   W  Dn , the effect of 
the piezoelectric charges on the ZnO energy band is considered 
as a perturbation. The total current density can be obtained by 
solving  Equation (2)  [  19  ] 

 
J = Jp + Jn = J0[exp(

q V
kT

− 1])   
(11)   

where the saturation current  J0 ≡ q Dp pno

Lp
+ q Dnnpo

Ln
  ,  p  no  is the 

thermal equilibrium hole concentration in the n-type semicon-
ductor,  n  po     is the thermal equilibrium electron concentration in 
the p-type semiconductor, and  L  p  and  L  n  are diffusion lengths 
of the electrons and holes, respectively. The intrinsic carrier 
density  n  i     is given by

ni = NC exp(−EC − E i

kT ) (12)
bH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–10
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    Figure  3 .     Ideal metal–semiconductor Schottky contacts with the pres-
ence of piezoelectric charges at an applied voltage  V   =  0 (thermal equi-
librium). a) Space charge distribution. b) Electric fi eld and c) energy band 
diagram in the presence of piezoelectric charges. Dashed lines indicate 
the electric fi eld and energy band in the absence of piezoelectric charges 
and the solid lines indicate the cases when a piezopotential is present in 
the semiconductor.  
where  N  C     is the effective density of states in the conduction 
band,  E  i     is the intrinsic Fermi level, and  E  C     is the bottom edge 
of the conduction band. 

 For a simple case in which the n-type side has an abrupt 
junction with donor concentration     N  D  and locally  pn0>> np0  , 
then  J0 ≈ q Dp pno

Lp
  , and  pno = ni exp( Ei−EF

kT )  , so the total current 
density is given by

 

J = J0[exp
q V
kT

− 1]

= q Dpni

Lp
exp

E i − EF

kT
[exp

q V
kT

− 1]

)(

)()(
  

(13)    
 If  J  C0     and  E  F0     are defi ned to be the saturation current density 

and the Fermi level in the absence of a piezopotential,

 
JC0 = q Dpni

Lp
exp

E i − EF0

kT( )
  

(14)    
 According to  Equation (9a – c)  and  Equation (10) , the Fermi 

level  E  F     in the presence of a piezopotential is given by

 
EF = EF0 − q 2DpiezoW2

piezo

2gs   
(15)

    
 Substituting  Equation (14)  and  (15)  into  Equation (13) , we 

obtain current–voltage characteristics of the piezoelectric p–n 
junction

 
J = JC0 exp

q 2DpiezoW2
piezo

2gskT
[exp

q V
kT)− 1](( )

  
(16)

    
 This means that the current transported across the p–n junc-

tion is an exponential function of the local piezocharges, the 
sign of which depends on the strain. Therefore, the current to 
be transported can be effectively tuned or controlled by not only 
the magnitude of the strain, but also by the sign of the strain 
(tensile versus compressive). This is the mechanism of the p–n-
junction-based piezotronic transistor. 

   4.2. Metal-Semiconductor Contact 

 The M–S contact is an important component in electronic 
devices. Similar to our analysis of the piezoelectric p–n junc-
tion, the M–S contact can be simplifi ed in terms of the charge 
distribution as shown in  Figure    3  a in the presence of a Schottky 
barrier. The semiconductor side is assumed to be n-type, and 
the surface states and other anomalies are ignored for sim-
plicity. Under strain, the created piezocharges at the interface 
not only change the height of the Schottky barrier, but also 
change its width. Different from the method of changing the 
Schottky barrier height by introducing dopants at the semicon-
ductor side, the piezopotential can be continuously tuned by 
strain for a fabricated device.  

 There are several theories about M–S Schottky contact, 
including the thermionic-emission theory, diffusion theory, 
and thermionic-emission-diffusion theory. [  19  ]  Although the 
diffusion model is taken as an example to clearly describe the 
mechanism of the piezotronic effect in this paper, the presented 
© 2011 WILEY-VCH Verlag GmAdv. Mater. 2011, XX, 1–10
methodology also applies to the thermionic-emission and ther-
mionic-emission-diffusion models. 

 The carriers transport in M–S contact is dominated by the 
majority carriers. The current density  Equation (2)  can be 
rewritten as [  19  ] 

 J = Jn = q: nnE + q Dn
dn

dx  
(17)

   

where  E = dRi
dx = dEc

dx
  . 

 According to the diffusion theory by Schottky, the solutions 
under forward bias (a metal is positive bias) can be obtained as [  19  ]  

Jn ≈ JD exp −qNBn

kT
[exp

q V
kT

− 1]( ) ( )
  

(18)
   

where  JD = q 2 Dn Nc
kT

√
2q ND(Rbi−V )

gs
exp(− qNBn

kT )    is the saturation 
current density. We defi ne  J  D0     as the saturation current density 
in the absence of piezoelectric charges

 
JD0 =

q 2 Dn Nc

kT

√
2q ND(Rbi0 − V )

g s
exp −qNBn0

kT( )
  

(19)
 
  

where  Rbi0    and  NBn0    are the built-in potential and Schottky 
barrier height in the absence of piezoelectric charges. In our 
5bH & Co. KGaA, Weinheim wileyonlinelibrary.com
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    Figure  4 .     The current–voltage characteristics of an ideal metal–semiconductor Schottky contact in the presence of piezoelectric charges. a) Current–
voltage curves at strains ranging from –1% to 1%. b) Relative current density as a function of strain at a fi xed forward bias voltage of 0.5 V.  
case, the effect of the piezoelectric charge can be considered to 
be a perturbation to the conduction-band edge  E  C    . The change 
in the effective Schottky barrier height induced by piezoelec-
tric charges can be derived from the potential distribution in 
 Equation (9a – c)  and  Equation (10) 

 
NBn = NBn0 − q 2DpiezoW2

piezo

2gs   
(20)

    
 Thus, the current density can be rewritten as

 
Jn ≈ JD0 exp

q 2DpiezoW2
piezo

2gskT
[exp

q V
kT

− 1]( ) ( )
  

(21)    

 This means that the current transported across the M–S con-
tact is an exponential function of the local piezocharges, the 
sign of which depends on the strain. Therefore, the current to 
be transported can be effectively tuned or controlled by not only 
the magnitude of the strain, but also by the sign of the strain 
(tensile versus compressive). This is the mechanism of the pie-
zotronic transistor for the M–S case. 

   4.3. Metal–Wurtzite Semiconductor Contact 

 We now expand the result presented in Section 4.2 for the 
special case of a metal–wurtzite semiconductor contact, such 
as Au–ZnO or Ag–ZnO. For the ZnO nanowire grown along 
 c -axis, the piezo-coeffi cient matrix is written as 

 
(e )i jk =

⎛
⎝ 0 0 0 e15

0
0 0 0 e15 0
e 31 e31 e33

0

0

⎞⎠
0
0

0

  . 

If the created strain is strain  s  33     along the  c -axis, the piezo-
electric polarization can be obtained from  Equation (4)  and  (5) 

 Pz = e33s33 = qDpiezoWpiezo  
(22)

    

 The current density is

 
J = JD0 exp

qe33s33Wpiezo

2gskT
exp

q V

kT
− 1( ) )([ ]

  
(23)    
© 2011 WILEY-VCH Verlag Gmwileyonlinelibrary.com
 It is clear that the current transported across the M–S interface is 
directly related to the exponential of the local strain, which means 
that the current can tuned on or off by controlling the strain. 

 For numerical calculation, the material constants are the piezo-
electric constants  e  33   =  1.22 C m  − 2     and the relative dielectric con-
stant is   ε   S   =  8.91   . The width of the piezocharges is  W  piezo   =0.25 nm  . 
The temperature is  T   =  300 K   .  Figure    4  a shows the calculated 
 J / J  D0     as a function of the externally applied voltage  V  across the 
M–S interface as a function of the strain, clearly demonstrating 
its tuning effect on the transported current. When the external 
voltage is fi xed at     V   =  0.5 V at forward bias,  J / J  D0  decreases when 
the strain changes from –1% to 1% (Figure  4 b). The theoretical 
results agree qualitatively with our previous experiments. [  23  ]  For 
reverse bias case, the dominant voltage dependence is mainly 
due to the change of the Schottky barrier in our model.  

    5. Numerical Simulation of Piezotronic Devices 

  5.1. Piezoelectric p–n Junctions 

 The analytical solutions for the 1D simplifi ed cases provide 
qualitative guidance for understanding the mechanism of 
how the piezopotental tunes and controls the carrier transport 
behavior. For a general case, the basic equations for the piezo-
tronic device can be solved numerically. For example, with con-
sidering the recombination of carriers in the depletion layer, 
we demonstrate the basic numerical method for simulating the 
piezoelectric p–n junction. 

 We fi rst study the DC characteristics of the p–n junction with 
uniform strain. The piezoelectric charge distribution is received 
by numerically solving  Equation (4)  and  (5) . Then the electrostatic 
equation, the convection and diffusion equations, and continuity 
equations are solved using the COMSOL software package. The 
electrical contacts at the ends of the p–n junction are assumed to 
be ideal Ohmic contacts and the Dirichlet boundary conditions 
are adopted for the carrier concentration and electrical potential 
at the device boundaries. [  24  ]   Figure    5  a shows a sketch of a piezo-
tronic nanowire p–n junction used for the calculation.  

 In order to have a reasonable comparison to a p–n junction 
diode, the dopant concentration function  N     can be approxi-
mately described using Gaussian functions
bH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–10
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    Figure  5 .     a) Schematic of a piezotronic ZnO nanowire p–n junction. b) Calculated current–voltage curves. c) Distribution of holes and d) distribution 
of electrons at a fi xed forward bias voltage of 0.8 V across the p–n junction under applied strain from –0.09% to 0.09%.  
 
N = NDn + NDn maxe

−( z−l
ch )2 − NAp maxe

−( z
ch )2

  
(24)   

where     N  Dn  is the n-type background doping concentration due 
to the presence of intrinsic defects,  N  Dn max     is the maximum 
donor doping concentration,  N  Ap max     is the maximum acceptor 
doping concentration,  l  is the length of ZnO nanowire, and  ch  
controls the spreading width of the doping concentration.  N  is 
assigned to have a negative value in p-type region and a positive 
value in n-type region. 

 There is no external optical excitation in our model, so the 
electron and hole generation rates  G  n   =   G  p   =  0. For electron-hole 
recombination, there are two important recombination mecha-
nisms, including band-to-band recombination and trap-assisted 
recombination (called Shockley–Read–Hall recombination). [  19  ]  
Band-to-band recombination describes the energy transition 
from the conduction band to the valence band by a radiative 
process (photon emission) or by transfer to another free elec-
tron or hole (Auger process). The Shockley–Read–Hall recom-
bination is a general recombination process by traps in the for-
bidden bandgap of the semiconductor. Taken as an example in 
our model, the Shockley–Read–Hall recombination is given by

 
Up = Un = USRH = np − n2

i

Jp(n + ni) + Jn(p + ni)   
(25)   

where   τ   p     and   τ   n     are the carrier lifetimes. Thus, the basic semi-
conductor  Equation (1)  and (3) are rewritten as

 

{gs∇2Ri = − q (p − n + N + D piezo)

−∇ · �Jn = qUSRH

−∇ · �Jp = qUSRH

−

  
(26)

    
© 2011 WILEY-VCH Verlag GAdv. Mater. 2011, XX, 1–10
 For boundaries conditions in contact with a metal electrode, 
the electrostatic potential is a constant. We assume an infi nite 
recombination velocity and no charge at the contact. Under an 
applied voltage, the electrostatic potential at the electrode is 
the potential corresponding to the quasi-Fermi level plus the 
applied voltage  V . The electrostatic potential and carrier con-
centrator at the electrode are given by [  19  ,  25  ] 

 
R = V +

q

kT
ln( N

2 +
√

N
2

)2 + n2
i

ni
)
  

(27a)
   

 
n = N

2
+

√(
N

2

)2

+ n2
i   

(27b)   

 p = − N
2 +

√(
N
2

)2 + n2
i   

(27c)
    

 Thus, we can use the above equations to obtain the boundary 
conditions for the electrostatic potential and carrier concentra-
tion at the electrode. 

 In our simulation, we choose ZnO as the piezoelectric semi-
conductor material. The length and radius of the nanowire device 
are 100 nm and 10 nm, respectively. The p-type is assumed to 
be non-piezoelectric so that it is not restricted to the wurtzite 
family. For simplicity, we neglect the difference in bandgap 
between the p-type semiconductor and ZnO. The length of 
the p-type is 20 nm and the length of n-type ZnO is 80 nm. The 
relative dielectric constants are  6r

⊥ = 7.77   and  6r
// = 8.91  . The 

intrinsic carrier density is     n  i   =  1.0  ×  10 6  cm  − 3 . The electron and 
hole mobilities are   μ   n      and   μ   p   =  180 cm 2  V  − 1  s  − 1 . The carrier 
lifetimes are   τ   p   =  0.1  μ s and  τ  n   =  0.1  μ s   . The n-type background 
7mbH & Co. KGaA, Weinheim wileyonlinelibrary.com
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    Figure  6 .     a) Calculated piezoelectric p–n junction current–voltage curves at different maximum 
donor doping concentrations and maximum donor acceptor doping concentrations. b) Calcu-
lated current–voltage curves at various n-type background doping concentration. c,d) Distribu-
tions of hole and electron concentrations along the length of the device at an applied forward 
voltage of 0.8 V at different maximum donor doping concentrations and maximum donor 
acceptor doping concentrations, respectively.  
doping concentration is  N  Dn   =  1  ×  10 15  cm  − 3    . 
The maximum donor doping concentra-
tion is  N  Dn   max   =  1  ×  10 17  cm  − 3     and the 
maximum acceptor doping concentration is 
    N  Ap   max   =  1  ×  10 17  cm  − 3 . The control constant 
 ch   =  4.66 nm. The temperature is  T   =  300 K. 
The piezoelectric charges are assumed to be 
distributed uniformly at the two ends of the 
n-type segment within a region of 0.25 nm, 
as represented schematically with red and 
blue colored zones in Figure 5a. For ease of 
labeling, a  z -axis is defi ned in Figure  5 a, with 
 z   =  0 representing the end of the p-type. The 
p–n junction is located at  z   =  20 nm along 
the axis. The n-type ends at  z   =  100 nm. 

 The current–voltage curves at different 
strains are shown in Figure  5 b. For the nega-
tive strain (compressive strain) case in our 
model, the positive piezoelectric charges 
are at the p–n interface side and attract the 
electrons to accumulate near the p–n junc-
tion, resulting in a reduction in the built-in 
potential adjacent to the p–n junction. Thus, 
the corresponding saturation current density 
increases at a fi xed bias voltage. Alterna-
tively, for the positive strain (tensile strain) 
case, negative piezoelectric charges are cre-
ated adjacent to the p–n interface and attract 
the holes to the local region, resulting in an 

increase in the built-in potential and a drop in saturation cur-
rent. Figure  5 c shows the distribution of hole concentrations at 
various strains from –0.08% to 0.08% at an applied voltage of 
 V   =  0.8 V, displaying the effect of piezoelectric charges on the 
hole distribution. Under tensile strain, the hole concentration 
shows a peak directly at the p–n junction interface where the 
negative piezoelectric charges accumulate. When a compres-
sive strain is applied, the local positive piezoelectric charges 
push the holes away from the p–n junction, resulting in a 
disappearance of the peak. Correspondingly, Figure  5 d shows 
the electron distribution in the device at different strains 
ranging from –0.08% to 0.08% at  V   =  0.8 V, showing a slightly 
increasing tendency. Since the right-hand electrode is Ohmic 
contact ( z   =  100 nm), the carriers fully screen the piezoelec-
tric charges at the contact. The electron concentration is rather 
low adjacent to the p–n junction. The piezoelectric charges at 
the p–n interface dominate the transport process. Therefore, 
the piezotronic effect is the result of tuning and controlling the 
carrier distribution in the device using the generated piezoelec-
tric charges at the two ends. 

 Using our model, we also studied the DC characteristics and 
the carrier concentration distribution at various doping concen-
trations. The strain is fi xed at –0.08% and the n-type background 
doping concentration  N  Dn     is set to 1  ×  10 15  cm  − 3 . The current–
voltage curves that correspond to choosing  N  Dn   max   =   N  Ap max     
and increasing  N  Dn max     from 1  ×  10 16  cm  − 3  to 9  ×  10 16  cm  − 3  
are plotted in  Figure    6  a. When the width of the depletion zone is 
fi xed, the built-in potential increases with  N  D max . Therefore, the 
threshold voltage increases, which pushes the “take off” point 
of the current–voltage curve moves to higher voltage. Then, by 
© 2011 WILEY-VCH Verlag Gwileyonlinelibrary.com
assuming  N  Dn   max   =   N  Ap max   =  1  ×  10 17  cm  − 3     and increasing  N  Dn   
  from 5  ×  10 13  cm  − 3  to 1  ×  10 15  cm  − 3 , the current–voltage curve 
shows little change, as shown in Figure  6 b. The numerical 
results indicate that the DC characteristics depend on the distri-
butions of the donors and the acceptor doping concentration in 
the model. Furthermore, the distributions of the holes and elec-
trons at an applied voltage of 0.8 V are shown in Figure  6 c,d, 
respectively.  

   5.2. Piezoelectric Transistor 

 The M–S–M ZnO nanowire devices are the typical piezoelectric 
transistor in our experimental studies. Using the fi nite element 
method (FEM), we solved the basic equations of the M–S–M 
ZnO nanowire device with an applied strain along the nanowire 
length direction ( c -axis). There are many types of M–S–M ZnO 
nanowire devices, including different types of M–S contacts 
and doping profi les, etc. The M–S contact can be fabricated 
as an Ohmic contact or a Schottky contact. The doping profi le 
can be approximated as a box profi le, a Gaussian distribution 
profi le, etc. Our calculations are based on a device model that 
has the following assumptions about the device properties: 
the surface states in ZnO are ignored; the electrostatic poten-
tials are constant at the end electrodes; the nanowire is n-type 
without p-type doping; the doping concentration  N     is approxi-
mately described using a Gaussian function; at equilibrium, 
the electron concentration at the metal contact is unaffected by 
the transported current; the recombination velocity is infi nite; 
and there is no charge at the contact. Although the M–S–M 
mbH & Co. KGaA, Weinheim Adv. Mater. 2011, XX, 1–10
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ZnO nanowire device model is a simplifi ed model for clearly 
describing the mechanism of piezopotential tuning the carrier 
transport process, the basic principle also applies to more com-
plex cases, such as different surface states, arbitrary doping 
profi les, and different piezoelectric semiconductor materials. 

 Using the COMSOL software package, the piezoelectric 
equations ( Equation (4) ) are solved fi rst. Then, the electrostatic 
equation and the convection and diffusion equations are solved 
with the piezoelectric charge distribution provided. The doping 
concentration function  N     is approximately descried using a 
Gaussian function

 N = NDn + NDn maxe
−( z−l

ch )2

  
(28)    

 The boundary conditions of the electrostatic potential at the 
electrode can be given by

 
R = V − PZno − Eg

2
+ q

kT
ln

N
2 +

√(
N
2

)2 + n2
i

ni
)(

  
(29)

   

where the electron affi nity  χ  ZnO  of ZnO is 4.5 eV and its 
bandgap  E  g  is 3.4 eV. By assuming the carrier concentration at 
the electrode is the same as the value at thermal equilibrium, 
the boundary conditions of carrier concentration at the elec-
trode can be expressed using  Equation (27b) . 

 We calculated the DC transport property of a M–S–M ZnO 
nanowire device in the presence of piezoelectric charges with 
applied strain ranging from –0.39% to 0.39%.  Figure    7  a shows 
a sketch of a piezotronic ZnO nanowire device. We choose  l   =  
50 nm, which is half of the length of the nanowire. The cur-
rent–voltage curves are shown in Figure  7 b. At negative strain 
© 2011 WILEY-VCH Verlag GmAdv. Mater. 2011, XX, 1–10

    Figure  7 .     a) Schematic of piezotronic ZnO nanowire transistor. b) Calculate
to 0.39%). The electron distribution in the semiconductor segment c) at a f
(compressive strain), the positive and negative piezoelectric 
charges are at the left-hand and right-hand M–S contacts, 
respectively (as shown in Figure  7 a), which lower and raise the 
local Schottky barrier heights at the corresponding contacts. 
When an external voltage is applied with the left-hand contact 
at positive bias, the dominant barrier that dictates the current–
voltage curve is the reversely biased contact at the right-hand 
side, at which the local barrier height is raised by piezoelectric 
charges. Thus, the transported current is lowered in compar-
ison to the case of a strain-free device. Alternatively, in the posi-
tive strain (tensile strain) case and under the same bias voltage, 
the current–voltage curve is largely determined by the M–S con-
tact at the right-hand side, which has a lowered barrier height, 
resulting in an increase in transported current compared to the 
strain-free case. The device displays the on state at 0.39% strain, 
and is off at –0.39% strain. Therefore, the piezopotential acts as 
a gate voltage to tune and control the current of piezoelectric 
transistor at the M–S interface and the device can be switched 
on and off by switching the applied strain, which is the piezo-
tronic FET.  

 Figure  7 c shows the electron concentration along the device 
at an applied voltage  V   =  0.8 V   . When an external voltage is 
applied, the piezoelectric charges affect the peak height and 
position of the electron concentration distribution. With an 
increase in strain without applying a bias voltage, the magni-
tude of the peak of the electron concentration increases and the 
position of the peak shifts from 44.2 nm to 55.8 nm when the 
strain is varied from –0.39% to 0.39%, as shown in Figure  7 d. 

 Furthermore, we study the DC characteristics and the carrier 
concentration with different doping concentrations. In order 
to investigate how variation of the maximum donor doping 
9bH & Co. KGaA, Weinheim wileyonlinelibrary.com
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    Figure  8 .     Calculated transport characteristics of a piezotronic ZnO nanowire transistor. a) Piezoelectric M–S–M nanowire transistor current–voltage 
curves at various maximum donor doping concentrations. b) Current–voltage curves at different n-type background doping concentrations. Calculated 
electron distribution in the device at differnet maximum donor doping concentrations c) at a forward bias  V   =  0.8 V and d)  V   =  0.  
concentration and the maximum donor acceptor doping con-
centration affects the DC characteristics, we fi x the strain at 
–0.08% and the n-type background doping concentration  N  Dn     
of 1  ×  10 15  cm  − 3 . When  N  Dn max     is increased from 1  ×  10 16  cm  − 3  
to 9  ×  10 16  cm  − 3 , the current increases as well ( Figure    8  a). By 
fi xing     N  Dn max   =   N  Ap max   =  1  ×  10 17  cm  − 3 , the current rises with 
 N  Dn     increasing from 1  ×  10 13  cm  − 3  to 1  ×  10 15  cm  − 3  (Figure 
 8 b). The numerical results indicate that the DC characteristics 
depend on the doping concentration in the piezoelectric tran-
sistor. The distribution of electrons at applied voltages of 0.8 V 
and 0.0 V are shown in Figure  8 c,d, respectively.  

 In summary, we have presented the theoretical frame for pie-
zotronics by studying the charge transport across metal–semi-
conductor contacts and p–n junctions with the introduction of 
piezopotential. The analytical solutions derived under simplifi ed 
conditions are useful for illustrating the major physical charac-
teristics of the piezotronic devices, and the numerically calcu-
lated results for a practical case are provide an understanding 
of the transport characteristics of the piezotronic transistors. 
The theory presented here not only establishes the solid phys-
ical background for piezotronics, but also provides theoretical 
support to guide experimental design of piezotronic devices. 
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