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Abstract
We numerically calculate the wave function of two-dimensional electron gas (2DEG) for use in
2DEG transport theory and study the electron transport in ZnMgO/ZnO heterostructures. For
strongly confined 2DEG, the temperature dependence of the electron mobility is satisfactorily
explained using 2DEG transport theory. The interface roughness and ionized impurity scatterings
play important roles in the electron transport at low and moderate temperatures. At room
temperatures polar optical phonon scattering is the most important scattering mechanism. For
heterostructures having two parallel conduction paths in the 2DEG at the ZnMgO/ZnO interface
and in the ZnO thick layer, the electron transport is contributed by the two paths. We calculate
the mobility for the respective conduction paths, and then combine the two mobility components
to fit the experimental data. The theoretical calculations are in good agreement with the
experimental data.

Keywords: II–VI semiconductors, ZnMgO/ZnO heterostructures, electron transport, parallel
conduction

(Some figures may appear in colour only in the online journal)

1. Introduction

Zinc oxide-based materials have been widely used for pro-
duction of optoelectronic devices covering the UV and the
visible range, due to the direct ZnO gap of 3.4 eV and the
large excitonic ZnO binding energy of 60 meV [1–3]. A two-
dimensional electron gas (2DEG) with a high sheet carrier
density (over 1.0 10 cm13 2× − ) and a high mobility (over
1.0 10 cm Vs5 2× ) can form at the ZnMgO/ZnO interface,
which shows the great potential of ZnMgO/ZnO hetero-
structures in high-power, high-frequency applica-
tions [2, 4–6].

The wave function of 2DEG describes the electron dis-
tribution perpendicular to the 2DEG plane, which is closely
related to the theoretical predictions of the heterostructure
properties. The analytical wave functions proposed by Fang
and Howard [7] and Ando [8] have been used extensively in

various heterostructure systems [9–11], because of their
mathematical simplicity. But the Fang–Howard and Ando
wave functions may not work well in describing electron
penetration into the barrier layer. In calculations of transport
properties in wurtzite heterostructures, numerical 2DEG wave
functions are preferred over the analytical ones.

Undoped ZnO films always exhibit n-type conductivity
with background electron densities between 1016 and
10 cm17 3− [12], which is believed to be caused by native point
defects [13]. In real ZnMgO/ZnO heterostructures, the sheet
carrier density of defects-induced bulk electrons in the ZnO
thick layer can be comparable to, and may even exceed, the
sheet carrier density of 2DEG at the ZnMgO/ZnO interface.
In this situation, there are two parallel conduction paths in the
2DEG and in the three-dimensional (3D) ZnO thick layer.
The 2DEG and bulk conduction both contribute to the elec-
tron transport in ZnMgO/ZnO heterostructures. The electron
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transport in bulk ZnO and in ZnMgO/ZnO heterostructures
have been studied using pure bulk and 2DEG transport the-
ories [14–16], respectively, but studies on the effect of par-
allel conduction on the electron transport in ZnMgO/ZnO
heterostructures have not been reported.

In this study, we numerically calculate the wave function
of the 2DEG and study the electron transport in ZnMgO/ZnO
heterostructures. An electrostatic model taking into account
all possible charge sources is built to calculate the 2DEG
wave function using a numerical method. A scattering theory
for the 2DEG is described, and is applied to fit the 2DEG
mobility reported by Tampo et al [6]. The electron mobilities
in ZnO/ZnMgO heterostructures reported by Tsukazaki et al
[5] are successfully explained by a parallel conduction
mechanism.

2. Theory

2.1. Wave function of 2DEG

2.1.1. Electrostatic model. A typical Zn-polar ZnMgO/ZnO
heterostructure consists of a fully strained ZnMgO (0001)
barrier layer and a fully relaxed ZnO (0001) buffer layer. The
spontaneous and piezoelectric polarization effects induce a
2DEG at the ZnO side of the ZnMgO/ZnO interface. Here the
ZnO c-axis [0001] is defined as z-axis; the ZnMgO and ZnO
layers occupy the regions z 0< and z 0> , respectively. The
energy level Ei and wave function z( )iζ of electrons in the
2DEG obey the Schrödinger equation,

m z
z V z z E z

2 *

d

d
( ) ( ) ( ) ( ), (1)

2 2

2 i i i i
 ζ ζ ζ− + =

where ℏ is the reduced Planck constant, m* is the electron
effective mass, and V(z) is the potential energy. The potential
energy V(z) is given by

V z e z E z( ) ( ) ( ), (2)cϕ Δ Θ= − + −

where e is the electronic charge, z( )Θ is the step function,
E 0.9 Ec gΔ Δ= × is the conduction band discontinuity at the

ZnMgO/ZnO interface, EgΔ is the band gap discontinuity of
x2.145 eV for an Mg composition x [17], and the electrostatic

potential z( )ϕ satisfies the Poisson equation,

z z
z d z d
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d
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where ε0 is the permittivity of free space, sε is the low
frequency permittivity, d is the ZnMgO barrier width, z( )δ is
the delta function. The source terms on the right side of (3)
takes into account ionized surface states and polarization
charge at the ZnMgO surface, polarization charge at the
ZnMgO/ZnO interface, ionized donors throughout the
heterostructure, and electrons in the 2DEG channel. Donor-
like surface states on the ZnMgO (0001) surface are regarded
as the main source of the 2DEG electrons [17, 18]. After
releasing electrons to the 2DEG, ionized surface states with a

sheet charge density sσ are left at the surface (z d= − ). For
Zn-polar ZnMgO/ZnO heterostructures, the polarization
charge at the bottom surface of the ZnO layer has a sheet
density 0.054 C mb

2σ = [19], but this charge component is
assumed to be fully screened and thus is not included in (3); if
not, the 2DEG cannot form at the ZnMgO/ZnO interface.
Spontaneous and piezoelectric polarizations induced sheet
charge density at the ZnMgO/ZnO interface (z = 0) is

x0.024 C mi
2σ = for an Mg composition x [20]. Because the

total polarization charges must maintain electric neutrality,
the polarization sheet charge density at the ZnMgO (0001)
surface (z d= − ) is x0.054 0.024 C mt

2σ = − − . In this
work the electric quantum limit is assumed, i.e. all electrons
in the 2DEG occupy the first subband. Therefore, the charge
density of the 2DEG is given by n z e N z( ) · · | ( )|e s

(2D)
1

2ζ= ,

here Ns
(2D) is the 2DEG sheet carrier density and z( )1ζ is the

first subband wave function. Ionized donor impurities are
assumed to have a uniform density NIM throughout the
heterostructure, thus the charge density of ionized donors is
n e N·d IM= . All charge components involved in (3) should
maintain charge neutrality across the ZnMgO layer and the
electron channel region, thus

[

]

z d z d z

n n z z

( ) ( ) ( )

( ) d 0. (4)

s t i

d e

∫ σ δ σ δ σ δ+ − + +

+ − =
−∞

∞

2.1.2. Numerical method. A self-consistent solution of the
Schrödinger and Poisson equations can be obtained using a
numerical iterative method, details of the calculations can be
found elsewhere [21, 22]. To solve the Poisson equation, two
boundary conditions imposed on the electrostatic model are
that the electrostatic potential at the ZnMgO/ZnO interface is
zero (i.e. (0) 0ϕ = ), and the electrostatic field inside the ZnO
layer is zero (i.e. ( ) 0ϕ′ ∞ = ).

Tsukazaki et al [5] estimated the polarization charge
distribution in O-polar ZnO/ZnMgO heterostructures. With
these estimates, the self-consistent calculations can be
performed on O-polar ZnO/ZnMgO heterostructures.

2.2. Scattering mechanisms in 2DEG

The scattering theories of the 2DEG system have been well
developed by several authors [9, 15, 23–25]. We give below a
brief description of the most important scattering mechan-
isms, i.e. alloy scattering, interface roughness scattering,
ionized impurity scattering, acoustic phonon scattering, and
polar optical phonon scattering. All interactions between
electrons and these scattering mechanisms (except polar
optical phonons) are regarded as elastic collisions, thus an
analytical momentum relaxation time E( )τ can be defined.

2
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The energy average of E( )τ is given by [9]

E
E E E

E E
( )
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, (5)
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f E
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d ( )

d
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0
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∫

∫
τ
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=

where { }( )f E E E k T( ) 1 exp 10 F B
⎡⎣ ⎤⎦= − + is the Fer-

mi–Dirac function, EF is the Fermi level, kB is the Boltzmann
constant, and T is the temperature.

2.2.1. Alloy scattering (ALS). In ZnMgO, the random
distribution of cations destroys the crystal periodic potential
and thus causes a perturbation on electron motion, which is
termed the ALS. The electrons penetrating into the ZnMgO
layer will suffer strong ALS because of large conduction band
offset between MgO and ZnO. The matrix element for the
ALS is given by [24, 26]

M
S

Ωx x V z z
1

(1 )( ) ( ) d , (6)
d

ALS
2 2

0

1
4∫Δ ζ= −

−

where S is the sample area, x is the Mg composition of the
ZnMgO layer, Ω a x c x3 ( ) ( ) 22= is the volume of a
ZnMgO unit cell, a x x( ) 0.3250 0.005= + nm and
c x x( ) 0.5204 0.017= − nm are lattice constants of the
ZnMgO [27]. The conduction band offset VΔ is assumed to
be half the band-gap difference between ZnO and MgO:

V E E[ (MgO) (ZnO)] 2g gΔ = −
(6.4 3.43) 2 1.49 eV= − = [28]. The reciprocal momentum

relaxation time is given by
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where θ is the angle between electron wave vectors before
and after scattering. In the zero-temperature random phase
approximation, the screening function q( )ϵ is written as [9]

q
e m

π
H q( ) 1

*

2
( ), (8)

2

2
0 s

ϵ
ε ε

= +

where q is the component of 3D wave vector parallel to the
2DEG plane. q is related to the electron wave vector k by the
relation q k2 sin( 2)θ= . The form factor H q( ) is written as

H q z z z z q z z( ) d d ( ) ( ) exp( ). (9)1
2

1
2∫ ∫ ζ ζ= ′ ′ − − ′

The screening function as shown in (8) is also employed in
other scattering mechanisms.

2.2.2. Interface roughness scattering (IRS). IRS may play an
important role in the electron transport in a 2DEG. However,
interface roughness is difficult to directly measure and to
accurately model, because the fluctuations in the interface
position are spatially random. In theoretical calculations, two
analytical correlation functions, i.e. for the Gaussian,

( )C r r( ) exp2 2 2Δ Λ= − , and exponential,

C r r( ) exp( )2Δ Λ= − [29], have usually been employed to
describe the statistical properties of interface roughness for
simplifying the scattering model. Which form is the better
approximation depends on real interface profile. Once one
form has been fixed, the interface roughness can be described
by two parameters, i.e. the average roughness height Δ, and
the horizontal correlation length Λ. In this study we assume
the exponential distribution; thus the matrix element for the
IRS is given by [29]

( )M
e N

S
q

2
1 . (10)IRS

2
4 2 2

s
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0
2

s
2

2 2
3
2
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−

The reciprocal momentum relaxation time is given by
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2.2.3. Ionized impurity scattering (IIS). Most ZnMgO/ZnO
heterostructures are grown without intentional doping, but
residual impurities cannot be completely removed. Residual
impurities can cause local deformations of the crystal lattice;
further, ionized residual impurities can affect electron
mobility via Coulomb interactions. The lattice deformation
scattering is quite small compared with the Coulomb
scattering [30], therefore, only the IIS is taken into account
in the impurity scattering. In the Brooks–Herring model, the
matrix element for the IIS is given by [24]

[ ]
M

e N z F q z

S q

( ) ( , )

4
, (12)IIS

2
4

c
2

0
2

s
2 2ε ε

=

where N z( ) is the density of ionized impurities, F q z( , )c is
given by

F q z z z q z z( , ) d ( ) exp( ). (13)c 1
2∫ ζ= ′ ′ − − ′

We assume that ionized impurities are uniformly
distributed in the heterostructure at a density of NIM, thus
the reciprocal momentum relaxation time can be written as

[ ]

E

e m N

π

F q z z

q q

1

( )

*

4

( , ) d

( )
(1 cos )d . (14)

π

IIS

4
IM

3
0
2

s
2

0

c
2

2 2



∫
∫

τ ε ε

ϵ
θ θ

=

× −

2.2.4. Acoustic phonon scattering. Acoustic phonon
scattering may be important at low and moderate
temperatures, particularly in the materials of high purity
with low defect density. Because wurtzite ZnO has a
noncentrosymmetric structure, the electron-acoustic phonon
interactions arise from both deformation-potential (DP) and
piezoelectric (PE) coupling. In calculations, we neglect the

3
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acoustic phonon energy, and approximate the phonon
distribution by the equipartition law. A detailed description
of the acoustic phonon scattering can be found in [9] and [31].

2.2.5. Polar optical (PO) phonon scattering. An analytical
expression for the momentum relaxation time for PO phonon
scattering cannot be strictly defined because the PO phonon
scattering is both anisotropic and inelastic. Solving the
Boltzmann equation directly is necessary for the accurate
treatment of the PO phonon scattering. Applying the
Boltzmann equation to the PO phonon scattering, one can
get [9]

( )
( )

S E E S E E

S E E

1 ( ) ( ) ( )

( ) , (15)

0 a 0

e 0




Φ Φ ω

Φ ω

= − +

− −

here S0 is the out-scattering rate, Sa and Se are the in-scattering
rates for absorption and emission processes of the PO
phonons, respectively, E( )Φ is the perturbation term to be
determined. Detailed expressions of S0, Sa, and Se can be
found in [9]. In this study an iterative method is used to solve
(15). Once E( )Φ is obtained, the momentum relaxation time
can be calculated from (5) by replacing E( )τ by E( )Φ . If S0 is
the sum of the out-scattering rate of PO scattering and total
elastic scattering rates, a result contributed by all scattering
processes can be obtained.

The physical parameters used in the calculations below
are listed in table 1.

3. Calculated results and discussion

3.1. Calculated 2DEG wave functions

Figure 1 shows the 2DEG wave functions calculated
numerically for three different cases. In the electric quantum
limit, the 2DEG wave functions are independent of

temperature. The wave functions represented by the solid,
dotted and dashed lines will be used in transport analyses for
the Zn-polar ZnMgO/ZnO sample reported by Tampo et al
[6], O-polar ZnO/ZnMgO samples B and C reported by
Tsukazaki et al [5], respectively, in the following sections.

3.2. Electron transport in 2DEG

In the Zn-polar ZnMgO/ZnO heterostructure reported by
Tampo et al [6], the sheet carrier density determined by
Shubnikov–de Haas (SdH) measurement approaches the
result determined by Hall measurement, and the Hall result is
nearly independent of temperature, which implies that almost
all electrons are confined in the 2DEG, thus the effect of
parallel conduction on the electron transport is not important.
We attempt to explain the electron mobility using the pure
2DEG transport theory presented in section 2.2. Figure 2
shows a fit to the experimental data of Tampo et al [6]. By

Table 1. Parameters of ZnO employed in calculations. Here m0 is the
free electron mass.

Parameter Symbol (units) Value

Mass density (g cm )3ρ 5.67a

Electron effective mass m* m0.3 0
b

High frequency permittivity hε 3.7c

Low frequency permittivity sε 7.9c

LA-phonon velocity u (m s)l 5.0 103× d

PO-phonon temperature T (K)PO 837e

Piezoelectric tensor e (C m )15
2 0.37− f

e (C m )31
2 0.62− f

e (C m )33
2 0.96f

Acoustic DP constant D (eV) 15g

a

[32]
b

[33]
c

[34]
d

[35]
e

[36]
f

[37]
g

[38]

Figure 1. Calculated 2DEG wave functions for three different cases.
Ns

(2D) in the legend is in units of cm 2− .

Figure 2. A Fit to the experimental data of Tampo el al [6]. The
decomposed mobilities due to interface roughness scattering (μIRS ),
ionized impurity scattering (μIIS ), alloy scattering (μALS ), acoustic
DP scattering (μDP ), acoustic PE scattering (μPE ), PO phonon
scattering (μPO ), and the combined mobility (μTOT ) are present. The
solid squares represent the experimental data of Tampo el al [6].
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setting the roughness parameters 0.55Δ = nm and 5Λ = nm,
and the ionized impurity density N 3 10 cmIM

17 3= × − , a
good agreement is obtained between the theoretical and
experimental results. The IRS and IIS dominate the mobility
at low and moderate temperatures. The parameters for the IIS
and IRS are independent, thus a good fit could be found using
other parameter settings. An accurate evaluation of the rela-
tive importance of IIS and IRS relies on direct measurements
of these parameters. The ALS is quite small, but this scat-
tering is determined only by Mg composition and cannot be
removed by improving crystal quality. The acoustic PE
scattering is close to the DP scattering, but they have different
density dependences. [39] The PO phonon scattering dom-
inates the mobility at temperatures above 200 K.

The IIS is the most important scattering mechanism in
bulk materials at low temperatures, but because the over-
lapping of electrons with impurities is small in heterostructure
materials, the IIS may be relatively less important in 2DEG
electron transport. In contrast, the IRS may be important,
particularly in high density 2DEG [39].

3.3. Parallel conduction mechanism

Tsukazaki et al [5] observed SdH oscillations and quantum
Hall effects in O-polar ZnO/ZnMgO heterostructures. The
samples they measured have significant temperature depen-
dence of the sheet carrier densities, implying the presence of
parallel conduction in the ZnO thick layer. Figure 3 shows the
extraction of the 2DEG and the bulk conduction components
from the total sheet carrier density for sample C of Tsukazaki
et al [5]. The total sheet carrier density is given by Hall
measurement, which can be approximated by
N T T4.96 10 1.11 10 3.67 10 cms

7 2 10 12 2= × + × + × − .
The 2DEG sheet carrier density, N 1.8 10 cms

(2D) 12 2= × − ,
derived from SdH measurement, is assumed independent of
temperature. Thus, the sheet carrier density of bulk electrons
Ns

(3D) can be given by N N Ns
(3D)

s s
(2D)= − . It can be seen from

figure 3 that even at liquid helium temperatures the Ns
(3D) is

larger than the Ns
(2D), implying that the bulk conduction is

important in the electron transport in this heterostructure. As
the temperature increases, the contribution of the bulk con-
duction to the electron transport will continuously increase.

We attempt to fit the electron mobility for this sample
using the parallel conduction mechanism. The 2DEG mobility
is calculated using the model presented in section 2.2; the
bulk electron mobility is calculated considering the IIS,
acoustic phonon scattering, and PO phonon scattering. The
Brooks–Herring model, though very popular in studying the
IIS of bulk electrons, will make incorrect predictions at low
temperatures when the screening length becomes much
shorter than the average separation distance of the impurities.
Here, a modified Brooks–Herring model proposed by Taki-
moto [40] is used to calculate the IIS of bulk electrons, and
the acoustic phonon scattering is calculated according to
Yang et al [14], and the PO phonon scattering is calculated by
solving the Boltzmann equation directly [41]. After the 2DEG
mobility, μ(2D), and the bulk electron mobility, μ(3D), are
calculated, a combined mobility is given by
μ y μ y μ· (1 ) ·TOT

(2D) (3D)= + − , where y N N/s
(2D)

s= is
the 2DEG density fraction.

Figure 4 shows a fit to the experimental data for sample C
of Tsukazaki et al [5]. By taking into account the 2DEG and
the bulk conduction paths, the calculated results are in good
agreement with the experimental data. The theoretical mobi-
lities in the 2DEG and in the ZnO thick layer are calculated
using the same parameters, i.e. N 1 10 cmIM

17 3= × − ,
0.55Δ = nm, and 5Λ = nm. Note that there is a slight

oscillation in the μ(3D) at lower temperatures; this is because
in the IIS, due to higher density of bulk electrons in sample C,
Takimotoʼs modification cannot completely overcome the
strong screening problem in the Brooks–Herring model.

We use the parallel conduction mechanism to fit another
experimental data of Tsukazaki et al [5]. It can be seen from
figure 5 that a good fit is obtained by setting
N 5.8 10 cmIM

16 3= × − , 0.55Δ = nm, 5Λ = nm, demon-
strating the validity of the parallel conduction mechanism.

In the published literature, the DP constant D of ZnO is
usually treated as a fitting parameter ranging from 3.8 to

Figure 3. Sheet carrier density as a function of temperature. The
solid squares represent the sheet carrier density for sample C of
Tsukazaki et al [5].

Figure 4. Mobility as a function of temperature. The solid squares
represent the experimental data for sample C of Tsukazaki et al [5].
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15 eV [16, 36, 38]. When using the curve fitting method to
determine D value, both measurement errors and other inac-
curate parameter estimates could cause a large variation in the
D value. The accurate determination of D requires accurate
experimental data measured in high-pure, defect-free ZnO
materials and more theoretical studies. In this study, all three
sets of experimental data are well fitted using D = 15 eV, and
other intrinsic parameters also remain unchanged.

4. Conclusions

In this study, the electron transport in ZnMgO/ZnO hetero-
structures is studied using numerical 2DEG wave functions.
The experimental data reported by Tampo et al [6] are
satisfactorily explained using the pure 2DEG transport theory.
It is found that the interface roughness and ionized impurity
scatterings dominate the electron mobility at low and mod-
erate temperatures. At room temperature the polar optical
phonon scattering is the most important scattering mechan-
ism. For the heterostructures exhibiting obvious parallel
conduction characteristics, the electron transport is con-
tributed by two parallel conduction paths in the 2DEG at the
ZnMgO/ZnO interface and in the ZnO thick layer. The par-
allel conduction mechanism is used to fit the experimental
data of Tsukazaki et al [5]. Each set of experimental data can
be explained satisfactorily using our theory without adjusting
any intrinsic parameter values.
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