

applications and materials science

Tandem organic light-emitting diodes with an effective nondoped charge-generation unit

Bo Jiao^{1,2}, Zhaoxin Wu^{*,1,2}, Zhiyuan Yang³, and Xun Hou¹

Received 10 July 2013, revised 7 August 2013, accepted 12 August 2013 Published online 20 September 2013

Keywords charge generation, molybdenum aluminum trioxide, tandem organic light-emitting diodes, tris(8-hydroxyquinoline)

An undoped charge-generation unit (CGU) with the structure of lithium fluoride (LiF)/aluminum/molybdenum trioxide (MoO₃) was demonstrated in tandem organic light-emitting diodes (OLEDs). Tandem OLEDs with two identical emissive units consisting of 4,4′-bis-(1-naphthyl-*N*-phenylamino)-biphenyl (NPB)/tris(8-hydroxyquinoline) aluminum (Alq₃) exhibited superior performance over a corresponding single-unit device. Under a driving current of 650 A m⁻², the current efficiency of the tandem OLEDs was about 6.95 cd A⁻¹, almost double that

of the single-unit OLEDs. The operational stability of the tandem OLEDs was also enhanced compared with that of the single-unit OLEDs. It was demonstrated that the MoO₃ plays a critical role of charge generation in this undoped CGU. The LiF/Al layers were used to enhance the electron injection from MoO₃ layer to the adjacent Alq₃ layer. Furthermore, fabrication of this CGU involves no sputtering or doping process, which can render tandem OLEDs processing more feasible.

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

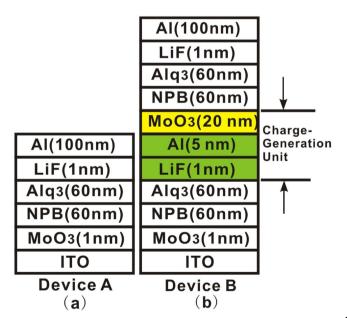
1 Introduction Tandem organic light-emitting diodes (OLEDs) have received considerable attention for their advantages of enhanced current efficiency and luminance at low current density, as well as the prolonged lifetime as compared to conventional single-unit OLEDs [1–19]. The typical structure of tandem OLEDs consists of two or multiple electroluminescence (EL) units vertically stacked in series through a charge-generation unit (CGU). The CGU plays an important role for charge generation and injection to the adjacent EL unit in the working process of tandem OLEDs.

Since the electric-field-assisted bipolar charge-generation effect of CGU with the structure of Mg-doped tris(8-hydroxyquinoline) aluminum (Alq₃)/V₂O₅ was demonstrated [4], various CGUs have been reported, such as Li-doped 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP)/V₂O₅ [5], Li-doped Alq₃/FeCl₃-doped 4,4'-bis-(1-naphthyl-*N*-phenylamino)-biphenyl (NPB) [6], Mg-doped Alq₃/WO₃ [7], Li-doped 4,7-diphenyl-1,10-phenanthroline (Bphen)/MoO₃ [8], Cs₂CO₃-doped BCP/MoO₃ [18], Cs₂CO₃-doped Alq₃/Al/MoO₃ [9], C₆₀/MoO₃-doped

NPB [17], CsN₃-doped Bphen/MoO₃ [19], Cs-doped Bphen/tetrafluorotetracyano-quinodimethane(F₄-TCNQ)doped NPB [10], Mg-doped Alq₃/F₄-TCNQ-doped 4,4',4''-tris{N,-(3-methylphenyl)-N-phenylamino}-triphenylamine (MTDATA) [11], fullerene (C₆₀)-doped zinc phthalocyanine (ZnPc) [12], etc. Typically, the fabrication of these CGUs requires coevaporation or sputtering processes, which inevitably increases the manufacturing cost of the tandem OLEDs. Besides, the active metals used as an n-type dopant, such as lithium, are known to have high diffusivity in organic layers, and will diminish the device stability [20]. Thus, it is of great interest to investigate the feasibility of developing effective undoped CGUs. Such as Al/WO₃/Au [21], LiF/Al/ Au [22], LiF/Ca/Ag [22], LiF/Al/HAT-CN₆ [2], as well as organic semiconductor heterojunctions [23–26], such as copper hexadecafluorophthalocyanine (F₁₆CuPc)/copper phthalocyanine (CuPc) [24], pentacene/C₆₀ [25], C₆₀/ naphthyl end-capped oligothiophenes [26], etc. However, materials that differ from the material system of the singleunit OLEDs are needed in those reported CGUs, which will increase the complexity of the fabrication process. In this

¹ Key Laboratory of Photonics Technology for Information, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi 710049, P.R. China

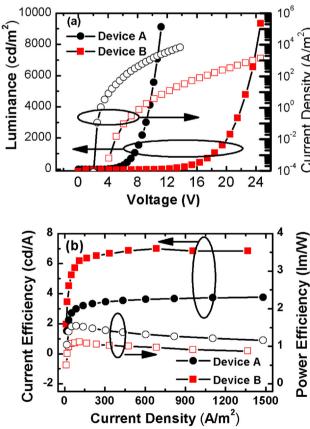
² Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shannxi 710049, P.R. China


³ School of Information Science and Technology, Northwest University, Xi'an, Shannxi 710069, P.R. China

^{*}Corresponding author: e-mail zhaoxinwu@mail.xjtu.edu.cn, Phone +86-29-82664867, Fax: +86-29-82664867

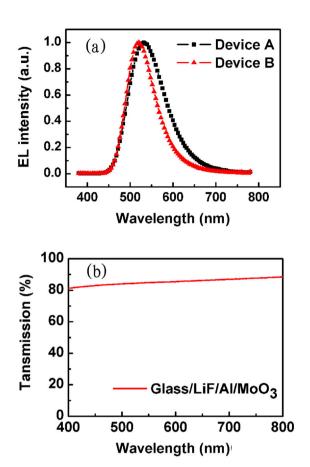
work, an undoped CGU with the structure of LiF/Al/MoO $_3$ was studied in tandem OLEDs. The LiF/Al structure was always used as cathode in single-unit OLEDs [27], and MoO $_3$ was used as a hole-injection layer [28]. Thus, tandem OLEDs with CGU of LiF/Al/MoO $_3$ did not contain materials that differ from the material system of the single-unit OLEDs, which can render tandem OLEDs processing more feasible.

2 Experimental details In our experiments, all devices were fabricated on patterned ITO-coated glass substrates with a sheet resistance of $20 \Omega/\Box$. The ITO glass was cleaned with deionized water and organic solvents, and then exposed to a UV-ozone ambient. All films were fabricated by thermal evaporation. Devices used for operational stability test were encapsulated under a nitrogen atmosphere with epoxy and glass lids. The thickness of the films was determined in situ by a quartz-crystal sensor and ex situ by a profilometer. The emission area of the device was about 12 mm². The detailed process of devices fabrication can be found in our previous reports [29, 30]. Figure 1 exhibits the schematic diagrams of the single-unit OLEDs (device A) and the tandem OLEDs (device B) used in this study. In the tandem OLEDs, just as shown in Fig. 1b, the nondoped structure of LiF/Al/MoO3 was used as CGU to connect the two identical green emission units consisting of NPB/Alq₃. The luminance-current-voltage (L-I-V) characteristics of the devices were measured using a computercontrolled sourcemeter (Keithley 2602) and a calibrated silicon photodiode. The EL spectra were measured by a PR650 spectrometer. The transmittance was recorded on a Hitachi UV 3010 spectrophotometer. All the measurements


Figure 1 The schematic diagrams of cross-sectional view of the single-unit OLEDs (device A) (a) and the tandem OLEDs (device B) (b) used in this study.

were carried out at room temperature under ambient conditions.

3 Experimental results and discussion The luminance-voltage-current characteristics of single-unit OLEDs (device A) and tandem OLEDs (device B) are shown in Fig. 2a. Because of the larger series resistance of the thicker organic layers in tandem OLEDs, the driving voltage of the tandem OLEDs is higher than that of the single-unit OLEDs at same luminance. For example, at a luminance of 1000 cd m⁻², the driving voltage of device A and device B are 7.5 and 18.5 V, respectively. Current efficiency and power efficiency as a function of driving current are shown in Fig. 2b. It can be seen that the current efficiency of tandem OLEDs (device B) using LiF/Al/MoO₃ as CGU is nearly twice that of the single-unit OLEDs (device A). For example, the current efficiency of the tandem OLEDs was about 6.95 cd A⁻¹ under the driving current of 650 A m⁻², almost 93% improvement over that of the single-unit OLEDs (3.6 cd A^{-1}) . As shown in Fig. 2b, the power efficiency of device B reaches about 1.1 lm W⁻¹, which is lower than 1.5 lm W⁻¹ of device A because of the higher driving voltage of the tandem OLEDs.


1862619, 2013, 12, Dowloaded from https://onlinelbfrarg.wieley.com/doi/10.1002/pss.2.01330119 by CAS-XIAN INSTITUTION OPTICS PRECISION MECHANICS, Wiley Online Library on [09/11/2025]. See the Terms and Conditions (https://onlinelbf

onditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Figure 2 (a) Luminance–voltage–current density characteristics and (b) current efficiency, power efficiency as the function of the driving current (b) for single-unit OLEDs (device A) and tandem OLEDs (device B).

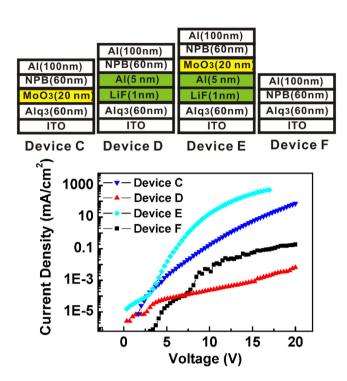


Figure 3 (a) EL spectra of the single-unit OLEDs (device A) and the tandem OLEDs (device B) viewed in the normal direction under driving voltage of 10 V, and (b) transmittance spectra of glass/LiF (1 nm)/Al (5 nm)/MoO₃ (20 nm).

The normalized EL spectra of the single-unit OLEDs (device A) and the tandem OLEDs (device B) are shown in Fig. 3a. All devices emit green light at about 536 nm, but the tandem OLEDs exhibited a narrower spectrum with a full width at half-maximum (FWHM) of 91 nm, while the single-unit OLEDs shows an FWHM of 108 nm. The narrower spectra of device B was ascribed to optical interference between emissions from two stacked emission unit. Figure 3b exhibits the transmittance of the Glass/LiF (1 nm)/Al (5 nm)/MoO₃ (20 nm). It can be seen that the optical transparency of the CGU is larger than 80% over the whole visible spectrum, which indicated that this CGU exhibits potential in the fabrication of white tandem OLEDs.

As shown in Fig. 4, devices with structure of ITO/Alq₃ (60 nm)/interlayer (*X* nm)/NPB (60 nm)/Al (100 nm) were fabricated to investigate the charge-generation mechanism of the CGU. The interlayer are MoO₃ (20 nm), LiF (1 nm)/Al (5 nm), and LiF(1 nm)/Al(5 nm)/MoO₃ (20 nm) for device C, device D, and device E, respectively. Device F with structure of ITO/Alq₃(60 nm)/NPB (60 nm)/Al (100 nm) was also fabricated as a control device. Here, the ITO was used as the anode, and the aluminum as the cathode. The large offset

Figure 4 The schematic diagrams of cross-sectional view of device C, device D, device E, and device F, as well as their current–voltage characteristics. Here, ITO was used as the anode, and Al was used as the cathode.

between the Fermi energy of ITO (4.8 eV) and the highest occupied molecular orbital (HOMO) of Alq₃ (5.8 eV), as well as the great offset between the Fermi energy of aluminum (4.3 eV) and the lowest unoccupied molecular orbital (LUMO) of NPB (5.8 eV), served to reduce the external carrier injection. Then, when devices C-F were biased at forward voltage, the current of the device was totally determined by the charge-generation ability of the interlayer. The current-voltage characteristics of devices C-F are shown in Fig. 4. For device C with LiF (1 nm)/Al (5 nm) as interlayer, the lowest current at the same voltage was obtained, which indicated the interlayer consisted of LiF (1 nm)/Al (5 nm) cannot generate charge efficiently. For device D with an interlayer of 20 nm MoO₃, the current was larger than that of the control device (device F), which indicated that the MoO₃ is an efficient CGU. For device E with an interlayer consisting of LiF (1 nm)/Al (5 nm)/MoO₃ (20 nm), the largest current density was achieved at the same voltage. Thus, the MoO₃ plays a critical role of charge generation in this CGU. Recently, the energy level alignment at MoO₃/organic interfaces was determined via UPS and IPES measurements, and the n-type nature, as well as the electron extraction effect of MoO₃ was demonstrated [31, 32]. The charge-generation mechanism of this CGU is shown in Fig. 5. When an external electric field was applied, electrons were extracted from the MoO₃/NPB interface and transported in the MoO₃ layer, while holes were injected into the NPB layer. For the LiF (1 nm)/Al (5 nm) structure, it has

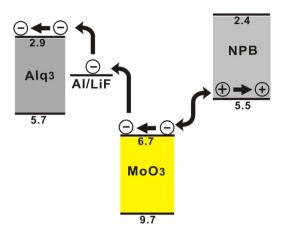
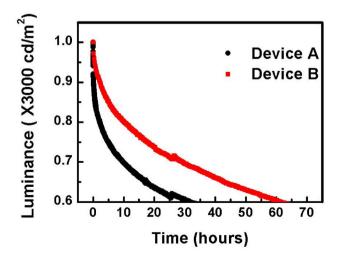



Figure 5 Schematic energy-band diagram of the LiF(1 nm)/Al $(3 \text{ nm})/\text{MoO}_3$ (20 nm).

been demonstrated that the Al atoms will react with Alq₃ and molecular LiF, and form an ultrathin n-type doped layer at the Alq₃ surface during the deposition of the Al film [33], which can reduce the electron-injection barrier, as well as enhance the electron injection to the adjacent Alq₃ layer.

The results of operational stability tests for device A (single-unit OLEDs) and device B (tandem OLEDs) are shown in Fig. 6. Tests of those two devices began with the same initial luminance of 3000 cd m^{-2} . The lifetime at 60% of degradation ($t_{0.6}$) of device A was 30 h, whereas the $t_{0.6}$ of device B was 60 h, which was twice that of device A. Because of the higher efficiency, the current density of tandem OLEDs (327 A m^{-2}) is significantly lower than that of the single-unit OLEDs (873 A m^{-2}) at the same initial

Figure 6 Luminance as a function of the driving time for device A (single-unit OLEDs) and device B (tandem OLEDs) from an initial luminance of 3000 cd m⁻², respectively.

luminance of 3000 cd m⁻², which will reduce the Joule heating in the organic film. Thus, the operational stability for tandem OLEDs was enhanced.

4 Conclusions In conclusion, an undoped CGU with the structure of LiF/Al/MoO₃ was demonstrated in tandem OLEDs. Tandem OLEDs with two identical emissive units consisting of NPB/Alq₃ exhibited superior current efficiency over a conventional single-unit device. At 650 A m⁻², the current efficiency of the tandem OLEDs was about 6.95 cd A^{-1} , almost doubling that of the single-unit OLEDs. Operational stability of the tandem OLEDs was also enhanced compared with that of the control device. It was demonstrated that MoO₃ acted as a charge-generation layer, in addition the LiF/Al layers acted as an electron-injection unit in this CGU. Furthermore, fabrication of this CGU involves no sputtering or doping process, as well as materials that differ from the material system of the single-unit OLEDs, which will be beneficial for the development of lowcost tandem OLEDs.

18626319, 2013, 12, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/pssa.201330119 by CAS-XIAN INSTITUTION OPTICS PRECISION MECHANICS, Wiley Online Library on [09/11/2025]. See the Terms and Conditions

conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons

Acknowledgements This work was supported by the Basic Research Program of China (2013CB328701-2013CB328706), the National Natural Science Foundation of China (Program No. 61275034), the National Natural Science Young Foundation of Chian (Program No. 61106123), the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2012JQ8001), and the Fundamental Research Funds for the Central University (Program No. xjj2012087).

References

- [1] C. Yonghua, W. Qi, C. Jiangshan, M. Dongge, Y. Donghang, and W. Lixiang, Org. Electron. 13(7), 1121–1128 (2012).
- [2] T. Chiba, Y. J. Pu, R. Miyazaki, K. Nakayama, H. Sasabe, and J. Kido, Org. Electron. 12(4), 710–715 (2011).
- [3] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, SID Symp. Digest Tech. Pap. 34(1), 979–981 (2003).
- [4] T. Tsutsui and M. Terai, Appl. Phys. Lett. 84(3), 440–442 (2004).
- [5] F. Guo and D. Ma, Appl. Phys. Lett. 87(17), 173510 (2005).
- [6] L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84(2), 167–169 (2004).
- [7] C.-C. Chang, J.-F. Chen, S.-W. Hwang, and C. H. Chen, Appl. Phys. Lett. 87(25), 253501 (2005).
- [8] H. Kanno, R. J. Holmes, Y. Sun, S. Kena-Cohen, and S. R. Forrest, Adv. Mater. 18(3), 339–342 (2006).
- [9] C.-W. Chen, Y.-J. Lu, C.-C. Wu, E. H.-E. Wu, C.-W. Chu, and Y. Yang, Appl. Phys. Lett. 87(24), 241121 (2005).
- [10] T.-Y. Cho, C.-L. Lin, and C.-C. Wu, Appl. Phys. Lett. 88(11), 111106 (2006).
- [11] C. W. Law, K. M. Lau, M. K. Fung, M. Y. Chan, F. L. Wong, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 89(13), 133511 (2006).
- [12] Y. Chen, J. Chen, D. Ma, D. Yan, L. Wang, and F. Zhu, Appl. Phys. Lett. 98(24), 243309 (2011).
- [13] H.-D. Lee, S. J. Lee, K. Y. Lee, B. S. Kim, S. H. Lee, H. D. Bae, and Y. H. Tak, Jpn. J. Appl. Phys. 48(8), 082101 (2009).
- [14] J. X. Tang, M. K. Fung, C. S. Lee, and S. T. Lee, J. Mater. Chem. 20(13), 2539–2548 (2010).

- [15] J.-P. Yang, Q.-Y. Bao, Y. Xiao, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, Org. Electron. 13(11), 2243–2249 (2012).
- [16] L. Duan, T. Tsuboi, Y. Qiu, Y. Li, and G. Zhang, Opt. Exp. 20(13), 14564–14572 (2012).
- [17] X. Wu, W. Bi, Y. Hua, J. Sun, Z. Xiao, L. Wang, and S. Yin, Appl. Phys. Lett. 102(24), 243302 (2013).
- [18] T. W. Lee, T. Noh, B. K. Choi, M. S. Kim, D. W. Shin, and J. Kido, Appl. Phys. Lett. 92, (4). 043301 (2008).
- [19] K. S. Yook, S. O. Jeon, S. Y. Min, J. Y. Lee, H. J. Yang, T. Noh, S. K. Kang, and T. W. Lee, Adv. Funct. Mater. 20(11), 1797–1802 (2010).
- [20] B. W. D'Andrade, S. R. Forrest, and A. B. Chwang, Appl. Phys. Lett. 83(19), 3858–3860 (2003).
- [21] H. Zhang, Y. Dai, and D. Ma, Appl. Phys. Lett. 91(12), 123504 (2007).
- [22] J. X. Sun, X. L. Zhu, H. J. Peng, M. Wong, and H. S. Kwok, Appl. Phys. Lett. 87(9), 093504 (2005).
- [23] Y. H. Chen and D. G. Ma, J. Mater. Chem. 22(36), 18718– 18734 (2012).
- [24] S. L. Lai, M. Y. Chan, M. K. Fung, C. S. Lee, and S. T. Lee, J. Appl. Phys. 101(1), 014509 (2007).

- [25] M. V. M. Rao, T.-S. Huang, Y.-K. Su, and Y.-T. Huang, J. Electrochem. Soc. 157(1), H69–H71 (2010).
- [26] Y. H. Chen, H. K. Tian, Y. H. Geng, J. S. Chen, D. G. Ma, D. H. Yan, and L. X. Wang, J. Mater. Chem. 21(39), 15332– 15336 (2011).
- [27] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70(2), 152–154 (1997).
- [28] H. You, Y. Dai, Z. Zhang, and D. Ma, J. Appl. Phys. 101(2), 026105 (2007).
- [29] B. Jiao, Z. X. Wu, Y. Dai, D. D. Wang, and X. Hou, J. Phys. D: Appl. Phys. 42, 205108 (2009).
- [30] B. Jiao, Z. X. Wu, Q. He, Y. Tian, G. Mao, and X. Hou, J. Phys. D: Appl. Phys. 43, 035101 (2010).
- [31] J. Meyer, S. Hamwi, M. Kroger, W. Kowalsky, T. Riedl, and A. Kahn, Adv. Mater. 24(40), 5408–5427 (2012).
- [32] M. T. Greiner, L. Chai, M. G. Helander, W. M. Tang, and Z. H. Lu, Adv. Funct. Mater. 22(21), 4557–4568 (2012).
- [33] M. G. Mason, C. W. Tang, L. S. Hung, P. Raychaudhuri, J. Madathil, D. J. Giesen, L. Yan, Q. T. Le, Y. Gao, S. T. Lee, L. S. Liao, L. F. Cheng, W. R. Salaneck, D. A. dos Santos, and J. L. Bredas, J. Appl. Phys. 89(5), 2756–2765 (2001).