JOURNAL OF AIR FORCE ENGINEERING UNIVERSITY (NATURAL SCIENCE EDITION)

Vol. 1 No. 1 Apr. 2000

超短脉冲激光及其应用

侯 洵

(中国科学院 西安光学精密机械研究所,陕西 西安 710068)

摘 要: 评述了国际上超短脉冲激光技术的最新研究进展以及超短脉冲激光在超高速光通讯、海量信息存储、光合作用研究、化学反应过程研究等领域广泛的应用状况。

关键词: 超短脉冲激光;超快现象;光通讯;信息存储

分类号: TN2 文献标识码:A 文章编号:1009-3516(2000)01-0001-05

激光的出现是二十世纪最重要的发现之一,也是光学发展史上的第三个里程碑。激光一出现即以其高度的方向性、相干性以及高强度而受到各方面的重视并迅速获得应用。作为一种能量载体,它在加工与军事方面已经获得广泛应用。例如机械加工、材料热处理、合成与微加工,激光测距、地基/天基激光反导武器、致盲武器、激光制导炸弹等。作为一种信息载体,它在信息的获取、传输、存贮、处理与显示方面也都获得了愈来愈广泛的应用。

激光自出现以来一直朝着提高功率、扩展波长范围、缩短脉冲宽度以及全固态化、小型化以至微型化方向发展。目前,它已经深入到国民经济、国防建设与人们日常生活的大多数领域,成为人们认识世界、改造世界、保卫国家、提高生活质量的有力工具。激光技术包含的内容相当广泛,本文仅就其发展的最重要的前沿之一一一超短脉冲激光及其应用谈一些情况,供读者参考。

1 超短脉冲激光发展的历史及现状

脉冲激光技术自 1965 年用被动锁模红宝石激光器获得皮秒级脉冲而进入超短范围以来,发展十分迅速。70 年代中出现了对撞锁模环形染料激光器,使激光脉冲的宽度进入飞秒范围。至 80 年代中,对撞锁模环形染料激光器的脉冲宽度达到了 27 飞秒(fs)。1986 年,中科院西安光机所陈国夫在英国进修期间利用对撞锁模环形染料激光器创造了 19fs 的当时国际最短记录。1991 年国际上出现了自锁模钛宝石激光器,当时产生了 60fs 的脉冲。钛宝石固体飞秒激光器调谐范围宽(650~11-00nm),荧光带宽(理论上可以支持产生 3fs 的脉冲),可靠性高,使用方便。它的出现掀起了国际上发展飞秒激光技术与应用飞秒脉冲的热潮。钛宝石固体飞秒激光器产生的脉冲宽度 1993 年降至 11fs,1994 年降至 8fs,1996 年西安光机所的许林在奥地利产生了7.5fs的超短激光脉冲,1996年,毕业于西安光机所的魏志义博士在荷兰创造了全固态腔倒空压缩后4.5fs 的记录,而 1998 年西安光机所的程昭则在奥地利利用超宽带啁啾镜腔外压缩,获得了 4fs 的最佳结果。以上这些都是当时的国际最高指标。

与获取更短脉冲同步,超短脉冲技术的另一重要发展是实现了半导体激光器(LD) 泵浦的 Nd:YAG 激光器(1988,55ps)、LD 泵浦的 Cr:LiSAF 脉冲激光器(1994,47fs,1995,24fs) 以及近年利用 LD 泵浦的 $Nd:YVO_4$ 倍频后泵浦钛宝石产生 12fs 的全固态钛宝石激光器。飞秒激光技术发展的另一重要方向是利用啁啾脉冲放大(CPA) 技术获取超高功率。

超短脉冲激光技术近几年取得了突飞猛进的发展,当前达到的水平大体如下:

①固体激光器直接产生的脉冲宽度已缩小到了 5fs。经过压缩的最短脉冲为 4fs。经过放大、压缩,人们

⁽²⁰⁾ 收稿日期:2000-02-02

⁽C)作为4-2025 Chima Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

已经得到了输出脉宽 $5f_s$, 单脉冲能量 $5n_j$, 重复频率 1MHz 和脉宽 $5f_s$, 单脉冲能量 $0.5m_j$, 重复频率 1KHz 的超短脉冲激光。

- ②出现了用半导体激光器(LD) 泵浦的全固体化的飞秒激光器,使飞秒激光器体积更小、工作更稳定、寿命更长、使用更方便。
- ③开发了多种激光介质和放大介质,除 Ti:Sapphire 外,尚有 Cr³+:LiSAF,Cr³+:LiCAF,Cr⁴+: YAG,Nd:YVO₄等;发展了宽调谐的飞秒 OPO 及 OPA,拓宽了飞秒激光的波长可调谐范围。目前 OPO 的 频率已可覆盖 $178_{nm}-20~\mu_n$,而 OPA 则可以做到 6. $3f_s$ 、5J,波长 $550_{nm}-700_{nm}$; $4f_s$ 、1J,波长 $900_{nm}-1300_{nm}$ 。
 - ④出现了全光纤的超短脉冲激光器。
- ⑤发展了单次或重复频率 10Hz 的桌上型 TW(1TW = 10^{12} W)级固体飞秒激光器,取代了原来体积庞大、价格昂贵、投资高出数十倍的高功率飞秒激光系统。这类系统的峰值功率已达 100TW 以上,可以提供 10^{20} W/cm²的功率密度,为开展强场物理研究创造了条件。目前已经利用 25fs 的高功率激光脉冲在氦气中实现了 221次的高次谐波,从而获得了相干的可调谐的已进入水窗范围的 X 射线。

目前,飞秒激光技术的发展超势是:

- ①向更短的脉宽迈进。例如试图获得 Ti:Sapphire 的 3 fs 的极限脉宽; 寻求新的介质、机理和技术、向阿 秒($^{10^{-18}}$ 秒) 时域迈进。
- ②发展半导体激光器(LD) 泵浦的全固体飞秒激光器,包括飞秒光纤激光器和高功率的系统。研制端面发射的飞秒 LD 列阵器件、完善 DFB 激光器。
- ③发展桌上型数十 TW 可调谐飞秒激光系统,为在普通实验室开展强场物理及惯性约速快速点火创造条件。
- ④扩展飞秒激光的波长范围。利用各种方法,包括变换激光介质,使用多种频率变换技术,把飞秒激光的波长向软 X 射线及中红外、甚至远红外方向扩展,以适应多种学科的使用要求。

飞秒脉冲激光特别是钛宝石飞秒脉冲激光技术的出现,使开展飞秒激光脉冲与超快现象研究的单位如雨后春笋,学术活动空前活跃。除每年一次的国际激光与电光学会议、量子电子学会议、两年一次的超快现象会议进行这方面的交流外,1994年以来,更有一年一次的飞秒技术国际讨论会。美国、英国、法国与德国一向十分重视超短脉冲激光技术与超快现象的研究。美国不仅有贝尔实验室、劳伦茨里佛摩尔国家实验室、劳伦茨贝克莱国家实验室及多所大学从事这方面的研究并处于国际领先地位,而且 1991 年美国国家科学基金会还在 Michigan 大学设立了"超快光学中心(Center for Ultrafast optical science)",第一个五年投资 1000 万美元。第二个五年投资 1200 万美元。该中心还通过其它多种渠道获得经费资助,在超短激光脉冲的产生、测量、放大、压缩及其与物质的相互作用方面开展了广泛深入的研究。近年来,西欧一些国家如奥地利、荷兰也都十分重视这方面的研究并在飞秒激光脉冲的产生、放大与压缩方向先后于 1996 年、1997 年创造了国际领先的指标。日本在 1995 年启动了一个为期十年的飞秒技术项目,作为工业科学与技术厅的工业科技前沿计划的新项目,同时还为此专门组织了一个研究与协调的实体"femtosecond Technology Research Association"简称 EST A。该项目由飞秒激光技术、飞秒材料与相关技术和飞秒电子学与光电子学三部分组成。其主要目的是为 2005 年至 2010 年间光通讯与信息处理的速度自 Gb/s 升至 Tb/s 储备技术基础。这些都表明先进国家正以政府行为促进超短脉冲激光技术的发展。当前超短激光脉冲技术正在继续朝超短、超强、超宽带和更紧凑方向发展,向阿(10⁻¹⁸) 秒、拍(10¹⁵) 瓦进军,并日益与纳米级的显微技术相结合。

2 超短脉冲激光的应用

超短脉冲激光的最直接的应用就是人们利用它作为光源,形成了多种时间分辨光谱技术和泵浦/探测技术,例如:时间分辨荧光光谱技术、差异吸收光谱、反射光谱、时间分辨拉曼光谱、泵浦/探测技术、飞秒条纹相机、全光取样/电光取样测量、电吸收取样技术、交叉相位调制技术、超高时间分辨扫描探针显微技术、超快光导探针(3.5ps、亚微米空间分辨率、亚 100nV 电压分辨率)。这些超快速的信息获取技术大大推动了超快过程的研究。

信息的超快速获取是以超短脉冲激光为探针的,激光脉冲宽度决定了它的时间分辨率。时间分辨率的每一重大提高都会为科技工作者扩展视野,开辟新的研究领域,正如空间分辨率方面先后出现显微镜、电子显。

微镜和扫描遂道显微镜(STM)、原子力显微镜(AFM)时所发生的情形那样。信息的超快速获取使我们有可能研究凝聚相体系中自由基、溶剂化电子、激发几何异构化、光电离、光解、能量的辐射与非辐射转移等。这些与信息的产生、传递、存储、太阳能的转换与存储(光合作用)、肿瘤的形成和消失、衰老过程、药理作用、材料的辐射损伤与改性、同位素的富集与分离以及环境污染的治理等等均密切相关。对于凝聚相体系中上述过程的研究将使人类对物质微观过程的认识实现一次飞跃,从而对信息技术、材料、能源、环境保护与人类保键的进步做出重大贡献。超短脉冲激光与超快速信息获取技术的发展,直接带动物理、化学、生物、材料与信息科学的研究进入了微观超快过程领域,并开创了一些全新的研究领域,如飞秒化学、量子控制化学、半导体相干光谱、高/超高强度科学与技术等。

在化学方面,由于飞秒激光技术的问世和信息超快速获取技术的发展,化学反应基本规律的研究出现了飞秒化学与量子控制化学。物理化学家利用飞秒激光泵浦/探测技术研究化合物光解时过渡态动力学的实时过程、波包的运动、团簇的多光子电离动力学、表面的吸附、脱附或解离的动态过程以及分子内的传能过程。各国科学家对溶液、蛋白质与大分子的电子传递、溶济化效应、碰撞传能及溶质分子的光解动力学等开展了广泛的研究。飞秒激光技术的发展为化学家提供了以特定的光脉冲(特定波长、偏振状态、宽度、强度、波形)控制化学反应的可能性。这方面的研究是国际上又一个热点,并已在单分子光解、激光控制化学反应这两方面做出了一些实验与理论工作。例如:紫外单光子一步光解、振动预激光二步光解、激光相干相位控制双原子分子的电离和解离通道、飞秒激光脉冲控制 Ⅰ₂ + Xe→IXe + I 的反应过程等。

飞秒脉冲激光与纳米显微术的结合使人们可以研究半导体的纳米结构(量子线、量子点、纳米晶体)的载流子动力学,包括半导体中瞬态电子在高电场中的输运,灼热电子的驰豫和隧穿以及光与物质相互作用的动力学;可以测量大规模集成电路中任意点的瞬态电压以及纳米电子器件中的电荷、电压的瞬态现象等。这对于搞清限制高速电子、光子与光电子器件的高速性能的物理机制提供了强有力的工具。

在生物学方面,人们正在利用飞秒激光技术所提供的差异吸收光谱、泵浦/探测技术研究光合作用反应中心的传能、转能与电荷分离过程。光合作用是地球上规模最大的、关系到人类面临的粮食、能源、资源与环境等问题的太阳能利用工程。对其中涉及到光子、激子、电子与离子的传递与转化的复杂理化过程的了解,将能揭示自然界这一独特的高效吸能、传能和转能过程的机理,为提高农作物的产量以及仿生学方式的能源和信息方面加以应用提供理论依据并提出开发途径。除研究光合作用外,在人类视觉过程的机理探索、DNA中的能量转移的研究以及外科手术等方面,超短脉冲激光也都起着重要作用。

人类提高时间分辨率的不懈努力导致激光脉冲宽度的不断缩短,然而超短脉冲激光技术不仅为科学研究提供了各式各样以它为基础的超快速测试手段,而且超短脉冲激光技术的发展,尤其是啁啾脉冲放大(CPA)技术的出现还使人们得以获得超短超强的激光。这为研究光与物质的相互作用提供了前所未有的极端条件并由此诞生了一门新的物理学分支——强场物理。当前,人们已经可以产生高达 10°0 W/cm² 的超高强度光。在 10¹4 W/cm² 以上的高强度范围。激光与各种形态的物质的相互作用已经进入高度非线性与相对论性的范围。人们甚至可能把光与物质的相互作用延伸到原子核层次并研究强光与真空的相互作用。在这种极端条件下会出现许多新效应、新现象,衍生出一些新技术。事实上,人们已经发现并研究了一些新现象。如在~10¹4 W/cm² 的高强度范围,在气体中出现多光子电离、隧道电离、阈上电离、高次谐波及长距离非线性传输,由此衍生出 XUV 光谱学、长距离高精度测距技术、激光引发放电等。超短超强激光与固体的相互作用的研究,例如碰撞电离在固体中引起的损坏、电介质击穿、超高电场下材料的电子学特性等的研究,衍生出超高分辨率的微细加工与烧蚀、精密眼科手术、材料的合成与处理等新技术。

在~10¹⁸W/cm² 的超高强度范围,水窗 X 射线源、KeV 范围的 X 射线源、电子的加速、相对论聚焦、自通道效应等的研究必将导致许多新的科学发现和新实验方法与实用技术的出现。近年来,在超短超强激光脉冲与等离子体相互作用方面,人们不仅探索激光核聚变的快速点火的可行性,而且开始关注超强磁场的产生及其对光的传输的影响。超短超强激光能够产生数 Gbar 的压强和超高温、超高密度的等离子体,即可以在实验室创造恒星上才有的条件。这为天体物理的研究从观察、推测走向实验室模拟创造了条件,以致有人在"等离子体中的超强场国际会议"上作了题为"用激光把恒星带到地球上来"的报告。

啁啾脉冲放大(CPA)技术产生的超短超强脉冲激光还可能开辟多种强场科学技术,例如带电粒子的超强场加速(用超短超强激光所产生的尾波场加速带电粒子。在实验室范围内获得与周长数十公里的普通加速器相同的效果)、惯性约束聚变(ICF)的快速点火、超精细加工(脉冲愈短,被加工对象的破坏阈值愈低,加工的精度愈高)等。为创造新的工业高新技术提供一个开发平台。人们还可以利用超短超强激光脉冲与半导体。

光电开关产生THz辐射。后者因为频带很宽而具有反隐身能力。这不仅在军事上有重大应用前景,同时在生物医学和探地雷达等方面也有潜在的重要应用。

超短脉冲激光的另一重要应用是在信息的传输、处理与存贮方面。

我们知道,1984 年以前,信息的传输、交换与处理是靠普通电磁波、电子技术与电子计算机完成的。电磁波可传输的信息量正比于它的频率,信息处理的速度正比于器件的开关速度。光波的频率是普通电磁波的 10° 倍,光速是半导体材料中电子速度的 1000 倍,光子还具有空间与波长方面的并行处理能力。因此,光电子作为信息载体的通讯与信息处理技术最终必将代替以电子为载体或光电混合的通讯与信息处理技术。

目前的长距离大容量单信道光纤通讯最高速率为 10Gb/s, 不能满足信息的传输、交换与处理的要求。几年前通信界预测,到 2005 年,传输速率需达数百 Gb/s; 到 2010 年,传输速率应达 lTb/s。地区网当前的交换速率为 40Gb/s,2005 年应达 lTb/s,2010 年应达 5Tb/s。在实现高速大容量光通讯方面,通常可以使用时分复用(TDM)、波分复用(WDM)、时分复用加波分复用。在网络通讯方面,还可以使用码分多址(CDMA)等技术。由于时分复用会因光纤的截面形状偏离圆型以及铺设时产生的弯曲等而使划分的信道数受到较大限制,而高密度波分复用(DWDM)器作为对光波波长进行分离与合成的器件,具有可扩展通讯容量、降低成本、简化操作等优点,目前超高速、巨带宽、超大容量单向与双向图象与数字传输系统主要靠 DWDM来实施。1998年3月,朗迅公司已经用100个信道的光学波分复用和10Gb/s的单信道速率实现了400公里lTb/s的大容量通讯。要进入传输速率Tbit/s范围,有关器件都应运行在皮秒时间尺度。在这个时间尺度内,载波脉冲宽度与载体物质(光纤、光盘、各种光子器件)的原子、分子的运动周期相当,光与物质相互作用的量子特征将成为信息科学中的基本问题。这一基本问题的研究成果会为信息的海量存储、处理与海量传输的硬件技术提供科学基础。然而,与这一问题有关的现象都发生在皮秒甚至飞秒时域,只有飞秒激光脉冲技术才能提供研究它们的手段。

要实现通讯与信息处理速率从 Gb/s 到 Tb/s 的阶跃,必须解决通讯用的超短脉冲激光光源并开发出响应速度达到至少皮秒时域的光调制器、光开关、光探测器以及 OTDM、ODWDM 等一系列超短光脉冲的产生、放大、调制、开关、复用及解复用技术器件。为此,人们正在藉助飞秒激光与光电子技术所提供的探测技术深入研究半导体低维材料(量子线、量子点、纳米晶体)中的载流子动力学,测量大规模集成电路的瞬态电压以及纳米电子器件中的电荷、电压的瞬态现象,以便搞清限制上述器件速度提高的机制,找出改进的途径或新器件的原理。这方面的研究已经成为超快现象研究的热点,这充分体现在最近一次超快现象会议和国际飞秒技术讨论会的内容上。提供光通信速率与容量的另一方面的努力,表现在对光纤飞秒激光器、光纤孤子激光器和光纤非线性光学器件和研究上。

超短脉冲激光在通信领域的应用除光纤通讯这一"有线"形式之外,还有自由空间光通信(卫星对卫星的通信)与大气中的光通信(卫星对地面、地面对卫星、飞机对飞机)等"无线"形式。激光通信相对于无线电通信具有通信信道多、抗干扰能力强、不易被截获、保密性强等优点,在构成军用天基信息网方面有明显的优势。西方国家一直在研究它的特殊问题——跟踪瞄准与避开云雾,而大功率的超短脉冲激光源,超高速光调制器与探测器也是实现"无线"光通信的关键。

光开关作为光信息系统中大容量信息在网络光路中高速分组切换与选择吸收的关键性器件,历来受到重视,目前正向集成光波导开关和全光开关方向发展。在超高速全光开关与超快速光调制器方面,目前重点研究多量子阱结构,也有研究有机聚合物材料与生物芯片的。作为下一代电子器件,人们已经开始了基于超晶格微结构与纳米晶半导体的单电子器件。

由于光子在速度及空间与波长并行性上的优势,人们对光子计算机一直寄予厚望。最近,美国乔治亚研究所的科学家用偏振光束在液晶材料中实现了数据的可擦重写,这无疑在实现全光子计算机方面是一大突破。

我国早在 1991 年就启动了"八五"攀登计划项目:"飞秒激光技术与超快过程研究",比日本早 4 年,体现了国家在这一重要科技领域急起直追的战略部署和科技主管部门的远见卓识。我们自开展"飞秒激光技术与超快过程研究"以来,在飞秒激光技术与超快速测量技术方面取得了许多重要成果。在超快过程方面,我们开始了许多重要研究,取得了长足的进步。"九五"期间,这一研究中的一些内容在攀登计划预选项目"强场激光物理与飞秒超快过程研究"中得到了延续。

在信息的存储方面,与磁存储相比,光存储具有存储密度高、存储寿命长、信息位价格低和可卸换等优点,它是信息领域中的重大科学技术前沿之一,其中光盘存储已成为光电子产业的主要支柱(1998年全世界。

产值在 300 亿美元以上)。信息技术的飞速发展,对海量信息存储的需求迅猛增长,而光存储目前达到的存储密度和数据传输速率还远远满足不了飞速发展的信息技术的要求。于是,高密度和快读写的光存储技术,成为非常重要和极其迫切的课题,引起各国科学家争相研究和开发。达到或超过光的衍射极限(达到纳米量级)的超高密度存储技术和超大容量(海量)三维体存储技术,是当前信息存储领域的一个热点。纳米微区材料与超短脉冲激光相互作用的过程与机理的研究和对三维体存储优良介质、快速存取机制的探索,将不仅在材料、存储机理和技术等方面为海量光存储的发展提供科学基础,而且还将对材料科学、现代光学、信息工程学、微光机电工程学的研究产生深远影响。

3 结束语

以上只是超短脉冲激光及其应用的一个极概括的介绍。基于超短脉冲激光的信息的超快速获取是一种超快科学技术,是当前信息科学的前沿,具有强烈的渗透性和带动性。由于目前化学、生物、材料等学科的研究已深入到纳米、分子和原子尺度,在这个层次上,绝大多数现象都是超快过程,需要有超高时间、空间分辨能力的测试手段,即信息的超快速获取手段才能研究,因而超短脉冲激光技术的渗透性与带动性更加突出。在1995年的CLEO会议上,AT&T贝尔实验室Wayne H·Knox在其大会特邀报告中称:"在今后世界上所有的研究工作及应用中,超快科学与技术日益显得重要和不可或缺。相对而言,目前的超快技术发展速度还嫌太慢!必需加快步伐大力发展!"。1999年度诺贝尔化学奖授予从事飞秒化学研究的美藉埃及人A·H·Zewail,这无疑将进一步刺激超快过程研究的发展和超短脉冲激光技术的进步。希望本文能够引起有关方面的领导和科技人员对超快现象与超短脉冲激光技术的研究与应用的重视。谚云:工欲善其事,必先利其器,而最先进的装备与技术都是买不来的,只有靠国人自己重视基础研究、重视创新、自行研究。愿我国的超短脉冲激光技术及其应用能够在今后有迅速的长足的进步。

Ultrashort pulse laser and its applications

HOU Xun

(Xi'an Institute of Precision Mechanics, Chinese Academy of Science, Xi'an 710068, China)

Abstract: The newest advances in ultrashort pulse laser technology are briefly reviewed, and the several most important applications of ultrashort pulse laser, such as ultra-high speed optical communication, storage of great capacity information, study of photosynthesis and chemical interactions by means of femtosecond laser are also discussed.

Key words: Ultrashort pulse laser; Ultrafast phenomenon; Optical communication; Storage of information