文章编号:1002-2082(2005)03-0057-03

高分辨率蓝光光学显微测量系统

张东玲^{1,2}, 贺锋涛², 冯晓强², 侯 洵^{1,2}

(1. 河南大学 物理与信息光电子学院, 河南 开封 475001;

2. 中科院 西安光学精密机械研究所 瞬态光学技术国家重点实验室,陕西 西安 710068)

摘 要: 本系统用波长为 405 nm 的超亮度蓝色发光二极管作为光学显微镜的照明光源,结合 CCD 图像传感技术和图像采集技术,实现了对显微图像的实时观察和存取的计算机化。观察到的 DV D 盘片的清晰显微图像表明,其光学分辨率优于 400 nm。运用自编的图像分析软件对采集到的 CD-RW 光盘图像进行分析和标定,测定其道间距为 1.6 Hm。因此,本系统在显微观测领域,特别是对观测和分析接近普通光学显微镜分辨极限尺寸的微结构,有重要的实用价值。

关键词: 光学显微镜; CCD 图像传感器; 蓝色发光二极管; 分辨率; 显微测量

中**图**分类号·TH741.8

文献标识码:A

High-resolution Optical Micro-Survey System with Blue Illuminating Source

ZHANG Dong-ling^{1,2}, HE Feng-tao², FENG Xiao-qiang², HOU Xun^{1,2}

(1. Institute of Physics & Information Photoelectronics, Henan University, Kaifeng 475001, China; 2. State Key Lab

of Transient Optics and Technology, Xi'an Institute of Optics & Precision Mechanics, ASC, Xi'an 710068, China)

Abstract: With the 405 nm LED source, a high-resolution optical Micro-Survey system is setup. The distinct micro-image of DVD disk with resolution of 400 nm can be obtained using this system. Combing with CCD and the technology of image collection with computer, the systemcan perform the real time collection and computerized capture of micro-images. Moreover, the collected micro-images can be demarcated and analyzed by the image-analyzed software.

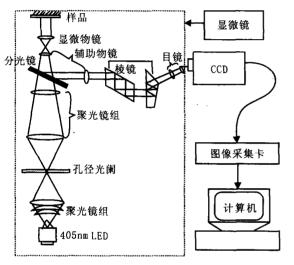
Keywords: optical microscope; CCD image sensor; blue LED; resolution; micro-survey

引言

样品表面甚至内部的细微结构的显微测量,一直是许多科学研究和工业生产的重要组成部分。传统的显微测量方法有投影法、显微镜观测法等,这些方法都以各自的优势在许多方面得到了广泛的应用。但在科学技术不断向微细尺度领域发展的今天,传统的测量手段难以满足在测量精度和自动化程度方面的要求。尽管近几十年发展起来的扫描隧道显微镜、扫描电子显微镜和扫描近场光学显微镜的测量精度都很高,但其设备庞大且昂贵,操作复杂,因此许多科学研究和工业领域应用较多的仍是一般的光学显微镜。对于传统的光学显微镜而言,其测量精度决定于显微镜

的空间分辨率 d(横向分辨率)。根据瑞利衍射极限原理,d的大小与光源的真空波长 λ 成正比,与显微镜物镜的有效数值孔径 NA成反比。因此要想提高显微系统的分辨率,需缩短照明光源的波长或提高物镜的有效数值孔径。

传统的光学显微镜一般采用白光做照明光源,分辨率较低。本系统采用单色性好、亮度高的蓝色发光二极管(LED)作为光学显微系统的照明光源,并结合CCD图像传感器和图像采集卡,实现了对图像的实时观察和采集;运用相应的图像分析软件,对采集到的图像进行分析测量,达到了优于传统光学显微镜的高分辨率。


收稿日期:2004-02-16

作者简介: 张东玲(1978-),女,河南人,河南大学硕士研究生,主要从事近场光学和高密度光存储研究。

目前,用来作为光源的超亮度蓝色发光二极管已 经进入市场, 其成品国内也已研制成功, 而目价格正 在迅速降低;同时由于采用 CCD 和计算机图像采集 卡对图像进行实时观察和采集,使得本系统具有易于 实现、实时显示、测量精度高等优点。

系统的组成、工作原理和特点

系统由三部分组成:显微镜、CCD 和图像采集系 统。如图 1 所示。本系统选用的是反射式金相显微镜, 其工作原理如下: 405 nm 蓝色发光二极管发出的蓝 色光经聚光镜组会聚在孔径光阑上,从孔径光阑出射 的光,再经一组聚光透镜会聚,经分光镜和辅助物镜 聚焦在显微物镜的焦平面上,最后通过物镜使光束变

高分辨率显微系统装置原理图

Fig. 1 Experimental setup of the high-resolution optical micro-survey system

为平行光均匀照射在测量样品上; 从样品表面反射回 的带有样品信息的光经显微物镜、辅助物镜后,被分 光镜反射,反射光束经棱镜后成一倒立放大的实像, 通过目镜接受放大后,再经CCD 摄像头在CCD 显示 器上成像;调节样品相对于显微物镜的距离,通过 CCD 对成像状态进行观察,最终使样品在 CCD 上呈 现清晰图像;CCD 的视频信号在图像采集卡中经 A/ D 转换、比例缩放等处理后,送往计算机中经显示器 实时显示, 再经动态调整, 直至屏幕上的显微图像最 清晰、最符合要求时再冻结图像。这样就可选择质量 较好的图像方便地存储到计算机中,以供以后的处理 和测量之用。

本系统所采用的功能参数如下: 45 × 显微物镜的 数值孔径为 0.65; CCD 摄像头为 768×576 像素; 图 像采集卡的最高分辨率为 1024 × 1024

系统是在显微镜物镜的数值孔径不变的情况下, 选用了单色性好的超亮度蓝色发光二极管作为照明 光源。在减小系统的相差[3]和对系统光路进行优化的 同时,使显微系统的分辨率有了很大提高。系统的分 辨率由显微物镜的分辨率、CCD 摄像头的分辨率和 图像采集卡的分辨率决定;但主要决定干显微物镜的 分辨率。由瑞利判据可知,物镜的分辨率由下式决定:

$$d = 0.610 \frac{\lambda}{NA} \tag{1}$$

当采用白光光源照明时,光源的平均波长可等效为 550 nm; 当 NA 取 0.65 时, 显微系统能分辨的物体 微结构的最小尺寸约为 516 nm; 而采用 405 nm 的 蓝光做照明光源时,理论上其分辨率可达 380 nm,分 辨能力较传统的显微系统提高了 1.36 倍多。若采用 更大数值孔径的显微物镜,其分辨率可进一步提高。

该系统克服了传统光学显微镜只能单人目测的 缺点,可供多人同时观察且讨论。还可根据需要,对显 示器上显示的图像,方便地调节其亮度,对比度,饱和 度等参数。当显示的图像符合要求时,即可实时采集, 以文件的方式存储到计算机硬盘中。需要时可采用相 应的软件对存储图像的微结构进行标定。

应用实例

2.1 **图像采集**

图 2(a) 是用传统的白光作为显微系统的照明光 源时对 DVD-ROM 光盘的显微成像; 图 2(b) 为系统

图 2 显微系统在不同照明光源照射下 对 DVD-ROM 的显微成像

Fig. 2 Micro-image of DVD-ROM under different illuminated light of (a) white light and (b) 405 nm blue light

的其他条件不变,仅改用超高亮度的蓝色发光 二极管 作为照明光源时 DVD 的图像。采集的图像均为 768 ×576个像素,只是在文中将其图形大小按比例进行 了缩小。图 2(a) 只能模糊看出 DVD 盘片的道与道之

间有间隔,而刻录点已很难分辨出。从图 2(b) 中可以

清楚地看到 DVD 光盘上的最小刻录点。对 DVD 刻录盘而言,其上最小的刻录点的尺寸为 400 nm,说明该显微系统的分辨率已优于 400 nm。

2.2 校准和检测

要精确测量样品的微结构尺寸,必须先进行定标。本系统采用自编的图像分析软件进行显微测量。此软件是用 Delphi 开发的基于 Windows 操作系统的测量软件, Delphi 有强大的菜单界面开发功能,因而此软件具有界面直观、操作简便等优点。以测量CD-R 相变光盘道间距为例,用显微镜本身带有的标尺进行标定。具体操作如下。

采用 45 倍显微物镜, 调整样品和显微物镜之间 的距离, 直到计算机屏幕上得到待测样品(CD-R)的 清晰的光学图像,并将其存入计算机中。在相同的条 件下,再采集标尺的显微图像,如图 3(a) 和(b) 所示。 图 3(c) 为自编的图像分析软件。首先将与测量图像 同放大倍数的标尺显微图像调入,软件的上方便会显 示出图中横线上的图像的灰度值,并记下图像两竖线 间隔的像素数。灰度值的个数与横线上图像的像素数 是一一对应的, 也就是说横线上的图像, 一个像素含 有一个灰度值;图像越白其灰度值越高,当为纯黑色 时,其灰度值为零。这样软件便会自动算出图形一个 像素所占的距离。标定后将样品图像调入,只需将横 线拖到样品需测部分的微结构,根据其灰度曲线拖动 上方的两条竖线,软件根据两竖线间的像素数即可自 动算出其尺寸。可以看出图像分析软件测出的 CD-R 相变光盘的道间距为 1.6 H_m , 如图 3(d) 所示, 与实 际的间距符合得很好。

本系统所采用的标尺的小格间距为 10 Hm,标尺的条纹较粗,误差相对较大。标定时,可选用多个小格平均目测误差,以减小其标定误差。对系统同样可用一个精确且已知微结构尺寸的物体作为标尺进行标定,微结构越精细,标定的误差就越小。例如,用CD-R 相变光盘的道间距作为标尺来标定:当选用一个道进行标定时,标定的误差达到12.6%,即±0.126 Hm;当选用 20 个道进行标定时,标定的误差只有5‰。但需要注意的是,对于本系统,决定其放大倍数的因素有4种:显微物镜的放大倍数、CCD 摄像系统的放大倍数、图像采集卡的分辨率及存储图片的属性。因此,作为标尺的物体和待测样品,应在相同的条件下进行显微成像,且用同一个图像采集卡进行图像的存储,存储图像的分辨率属性应完全相同。这样才能用我们自编的图像分析软件进行分析处理。

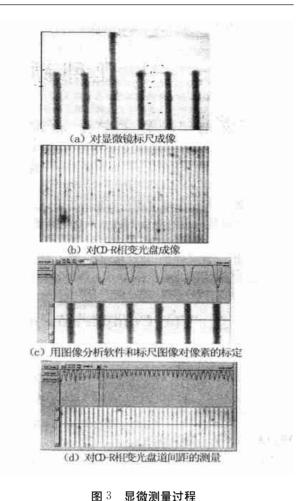


Fig. 3 The process of micro-survey

3 **结束语**

光学显微镜是一种应用非常广泛的观测工具。用短波长的蓝光作为其照明光源,并与 CCD 图像传感技术和计算机图像处理技术相结合,运用自编的图像分析软件,使其功能大大增强,实现了高分辨率和图像存取、分析、处理的自动化。它在显微观测领域,特别是在对观测和分析有接近普通光学显微镜分辨极限尺寸的微结构样品中,有重要的实用价值,如测量光数据存储中的刻录线宽和一些激光超快精细加工样品的微结构尺寸等。

参考文献:

- [1] D Binnning, H Rohrer. Scanning tunneling microscopy [J]. Helv Phys Acta, 1982, 55:725-735.
- [2] D W Phol, et al. Optical stethoscopy; image recording with ½20[J]. Appl Phys Lett, 1984, 44:651 -653.
- [3] 孙业英.光学显微分析[M].北京:清华大学出版社, 1997.4-6.