October 2002

紫外光电材料 ZnO 的反应溅射制备及研究*

杨晓东1 张景文2 邹 玮2 侯 洵2

(1 西北大学光子学与光子技术研究所, 西安 710069)

(2 中国科学院西安光学精密机械研究所光电子学研究室,西安710068)

摘 要 采用直流反应溅射法分别在 Si(111), Si(001), 及 K4 玻璃衬底上制备 ZnO 薄膜, 研究了氧氫比、衬底温度以及退火处理对于晶体结晶质量的影响, 发现生长过程中的退火处理提高了薄膜质量和晶面取向 · 通过优化生长条件, 在衬底温度为 350° C, 氧氫比为 1:2 的条件下生长出了 XRD 半高宽为 0.1° 、C 轴取向高度一致的 ZnO 薄膜 ·

关键词 ZnO; 直流反应溅射; XRD

0 引言

ZnO 是一种宽禁带直接带隙半导体材料, 其室温下禁带宽度为 3.37eV, 是制备蓝色及紫外光电器件的理想材料 · 氧化锌在室温下具有高达 60meV 的激子束缚能¹, 这是其它宽带隙材料如 GaN, SiC 无法比拟的 · 高的激子束缚能使得 ZnO 表现出很强的非线性光学特性, 有望用其制作紫外激光器、紫外光探测器、光开关等激子器件².

ZnO 的制备方法很多,包括化学汽相沉积 (CVD)^{3,4}激光脉冲沉积 (PLD)⁵,金属-有机化学 汽相沉积 (MOCVD)⁶,分子束外延 (MBE)⁷,磁控 溅射法^{8~11}等 · 近年来,直流反应溅射由于其沉 积面积大,沉积率高,沉积均匀以及薄膜和衬底间 附着力强而受到人们的关注 · 薄膜的特性强烈依赖于氧气与氩气的比值,溅射气压以及衬底温度 ·

本文研究了氧氫比和生长温度对 ZnO 薄膜的结晶质量及光电特性的影响,通过优化生长工艺得到了最佳氧氩比及最佳沉积温度,并在不同衬底上制备出了高度择优取向的 ZnO 薄膜.

1 实验

分别采用 K4 玻璃及 Si(111),及 Si(001)作为生长衬底,溅射所使用的硅片先后放入丙酮,酒精溶液中超声清洗,然后放入配置好的清洗液

中进行清洗,清洗后再用 HF 酸腐蚀液腐蚀约 lmin 时间,通过以上步骤可以除去硅表面的油污和氧化物层,有利于 ZnO 薄膜的溅射沉积.溅射系统由不锈钢真空反应室、机械泵、分子泵、温度控制系统、质量流量计及控制部分构成.溅射系统的本底真空度为 10^{-4} Pa,溅射靶材为纯度为 99.999%的高纯金属锌,靶的直径为 100 mm,厚度为 3 mm.反应气体为高纯度的氧气.在溅射过程中,通过调整氧气与氩气的流量来改变氧氩比,并使溅射气压保持在 $1.3 \sim 1.5$ Pa. 在每一次溅射之前,先使锌靶在氩气中预溅射 10 min,以便除去锌靶表面的氧化物层.实验条件见表 1.5

THE MAINTENANT OF THE PROPERTY									
表 1 薄膜的生长及退火条件									
样品编号	号 生长温度(℃)	生长时 间(min)	气氩比	工作气 压(Pa)	其他条件				
4#	300	60	1.3	1.3	未退火				
5#	350	60	1.3	1.3	氧气中退火 10min				
11#	350	60	1.4	1.3	氧气中退火 10min				
12#	350	60	1.3	1.3	氧气中退火 10min				
13#	350	60	1.2	1.3	氧气中退火 10min				
14#	300	60	1.2	1.5	未退火				
15#	350	60	1.2	1.5	未退火				
17#	400	60	1.2	1.5	未退火				
18#	450	60	1.2	1.5	未退火				
			,						

2 结果及讨论

采用飞利谱公司的四晶高分辨 X 射线衍射仪(发散角 $5\sim15''$, $\Delta\lambda/\lambda=2\sim5\times10^{-5}$)对样品的结构进行了分析, 得到X射线衍射(XRD)摇摆曲

^{*} 国家 95 攀登计划(攀登-95-预-20)和中国科学院西安光学精密机械研究所所长基金(49905059)资助项目 设备自期:2002-012tps://www.cnki.net

线(002)面的最小 FWHM 为 0.10° , 说明晶体的 结晶质量良好 · 图 1 给出了不同样品的 XRD 谱 线,从以上样品的衍射曲线中可以看出,样品具 有高度的择优取向.观察5#样品,发现在(103)

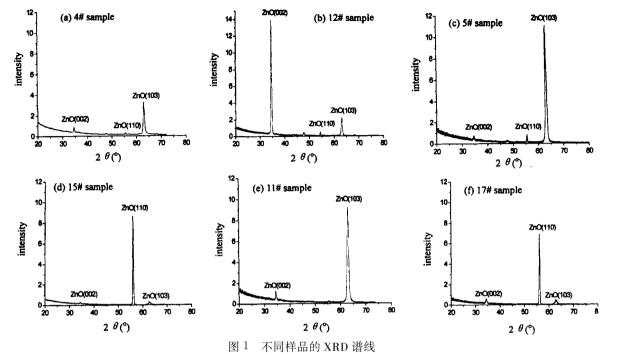


Fig. 1 XRD spectra of the samples

衍射峰的附近,还有一个小的衍射峰,经确定为 ZnO(101)的衍射峰,而 35°附近的衍射峰为 ZnO(002)面的衍射峰.5#样品同11#样品相比, (103)面半峰宽较窄, 衍射峰强度增加. 从表1可 知,5#样品的氧氯比大于11#样品,表明随着氧 氩比的增大,晶体的结晶质量提高⋅M·J·Brett 和 R·R·Parsons 报道了在氧氩混合气体中,增加氧 气含量将会提高晶体的结晶度,并使得(002)衍射 峰增强·另外, R. E. I. Schropp 以及 A. Madan 等 人也发现了随着氧气压的提高,(002)衍射增强的 情况·然而, L. J. Meng 和 M. P. dos Santos 等人 观察到当增大氧气压时, 衍射峰的强度反而减小, 这可能是由于中性氧原子的再次溅射效应所造成 的,通过改变溅射参量可以避免,在本文的实验 结果中,也观察到了晶体的结晶质量随氧分压的 增大而提高的现象,我们认为这是由于氧分压的 增大将会使得晶粒表面的 Zn 原子与 O 原子结合 的几率增大,填补了过多的0空位,从而改善了 ZnO 的化学比偏离 12 ;从图 1 还可以看出, 4 #样 品的衍射峰的半峰宽比5#样品宽,其(103)面衍 射峰强度也明显低于5#样品.同时,相对于4# 样品而言,5#样品的(002)面衍射峰减弱,晶体的 取向性提高。其原因是4井桂品没有进行退火处 理,外延层内的残余应力得不到有效的释放而引 起衍射峰的展宽,另外,在退火过程中,晶粒内部 和表面的原子通过热运动到达格点位置,有效抑 制了 O 空位和 Zn 间隙, 同时使得部分晶粒间的 晶界消失成长成为大的晶粒13.表明退火过程对 于抑制 0 空位缺陷,有效释放衬底、外延层间应 力,从而减小缺陷密度,提高结晶质量起重要作用. 表1列出了薄膜的生长及退火条件.

薄膜晶粒的大小可以通过 Sherrer 公式而由 衍射峰的半峰宽得到,即

$$L = K\lambda/\beta_{\cos\theta}$$
 (1)

式中 L 为晶粒的大小 β 为衍射峰的半高全宽 (FWHM), λ 为入射 X 射线的波长(0.15406nm), θ 为布喇格衍射角 . 表 2 列出了不同生长条件下 的晶粒尺寸,从中可以看出,当氧氯比从1:4升 到1.2时, 晶粒的尺寸从27.96nm升至86.87nm, 随着氧气分压的增加,晶粒尺寸将变大,进一步说 明薄膜的结晶质量随氧分压的增加而提高:

在薄膜的生长过程中,基底温度对薄膜的结 构有着重要的影响,从图 1 的 XRD 谱线中可以 看出,相对于15#样品而言,17#样品的(110)面 衍射峰强度减弱,而(002)及(103)面的衍射峰更 加明显,晶体的取向性逐渐变差,表明随着温度 的增加,薄膜的质量下降.图 2 给出了在 Si(111) 衬底上不同生长温度下制备的 ZnO 薄膜 XRD 半 峰宽的变化情况 · 从图中可以看出, 当基片温度低于 350°C 时, 随着温度的升高, 衍射峰的半高宽

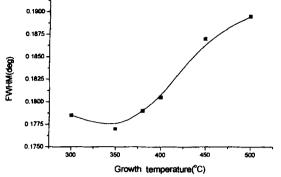


图 2 生长温度对于外延层 XRD 衍射半高宽的影响 Fig. 2 FWHM values of the ZnO epitaxial layer grown as a function of growth temperature

减小·这表明随着基片温度的升高,薄膜的平均粒度增大,晶体的结晶质量随之而提高·进一步提高生长温度,半高宽逐渐增大,当基底温度为500°C时,半高宽达到最大,为0.19°.说明晶体的结晶质量变差·这是由于随着温度的进一步升高,ZnO外延层与Si(111)衬底之间的热膨胀系数不同而产生的热应力将会使得晶面发生弯曲,或以位错的形式释放出来,引起外延层质量的下降·表2列出了不同样品的XRD测量结果·其中,4[‡],5[‡],11[‡]样品为 K⁴ 玻璃衬底上生长的 ZnO外延层,晶面取向为 ZnO(103)·12[‡],13[‡]样品选用 Si(001)衬底,14[‡],15[‡],17[‡],18[‡]为 Si(111)

表 2 样品参量测量结果

样品编号	2θ/(°)	d(nm)	D(nm) I	FWHM(°)
4#	62.98	0.1475	29.49	0.330
5#	63.00	0.1474	32.99	0.295
11#	62.96	0.1475	27.96	0.348
12#	34.56	0.2593	46.97	0.185
13#	34.46	0.2601	86.87	0.098
14 #	56.11	0.1638	52.32	0.180
15#	56.12	0.1638	53.73	0.175
17#	56.14	0.1637	52.24	0.180
18#	56.15	0.1637	50.29	0.187

村底上生长的 ZnO 薄膜 · 从表 2 中可以看出,不同的村底选择对于 ZnO 外延层的晶面取向具有重要影响, $Si(^{001})$ 村底上沉积的 ZnO 薄膜的 XRD 半高宽优于 K^4 玻璃村底及 $Si(^{111})$ 村底,其取向为 $ZnO(^{002})$,14 \sharp 18 \sharp 样品的晶面取向为 $ZnO(^{110})$.

图 3 为 13 # 样品的 XRD 摇摆曲线(roching curve), 其生长条件见表 1. 从图中可以看出, 薄膜具有单一的取向, 在 34.46°和 72.73°位置的衍射峰分别为对应 $\mathbf{ZnO}(002)$ 和 $\mathbf{ZnO}(004)$ 面, 69.20°处的衍射峰为 $\mathbf{Si}(001)$ 衬底的衍射, 摇摆曲线 $\mathbf{ZnO}(002)$ 面的半峰宽仅为 0.1°, 优于国内其它单位所报道的生长水平 .

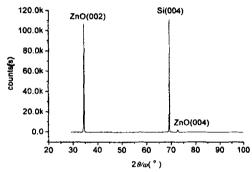


图 3 13 # 样品的摇摆曲线

Fig. 3 Rocking curve of 13 # ZnO sample

4 结论

- 1) 不同衬底所生长的 ZnO 外延层的晶向不同,分别采用 K^4 玻璃, $Si(^{001})$, $Si(^{111})$ 生长出了取向为(103),(002),(110)的 ZnO 薄膜.
- 2) 通过在氧气中进行高温退火,提高了 ZnO 外延层的结晶质量.
- 3) 通过优化生长条件,在衬底温度为 350° C,氧氩比为 1:2 的条件下生长出了半高宽仅为 0.1° 、高度取向的 ZnO 薄膜 .

参考文献

- Bagnall D M, Chen Y F, Zju Z. Optically pumped lasing of ZnO at room temperature. Appl Phys Lett, 1997, 70(17), 28: 2230~2232
- 2 Service R F·Will UV lasers beat the blues? Science $.\,1997,276(9)$ $.895{\sim}899$
- Hu, Gordon R G. Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical vapor deposition. J Appl Phys, 1992, 71(2):880~890
- 4 Shiosaki T, Ohnishi S, Kawabata A. Optical properties of single-crystalline ZnO film smoothly chemical vapor deposited on intermediately sputtered thin ZnO film on sapplire. J Appl Phys, 1979, 50(5):3113~3117
- 5 Suzuki A, Matsushita T, Sakamoto Y. Tranaparent conducting Al-doped ZnO thin films prepared by poulsed laser deposition.

 4pp Phys (A): 1996/35(1): L56 L59 +

- Wenas W W, Yamada A, Konagai M, et al. Metalorganic chemical vapor deposition of ZnO using D₂O as oxidant. Jpn J Appl Phys(A), 1994, 33(3):L283~L285
- 7 Chen Y.F., Bagnall D.M., Koh H.J., et al. Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire; Growth and characterization. J. Appl Phys. 1998, 84(7); 3912~3917
- 8 李剑光, 叶志镇, 赵炳辉等 · 硅基上直流反应磁控溅射沉积优质 ZnO 薄膜极其性能研究 · 半导体学报, 1996, 17(11) : $877\sim881$
- Hachigo A, Nakahal H, Higaki K, et al. Heteroepitaxial growth of ZnO films on diamond (111) plane by magnetron sputtering. Appl Phys Lett, 1994, 65(20):2556~2558
- Wacogne B, Roe M D, Pattinson T J, et al. Effective piezoelectric activity of zinc oxide films grown by radio-frequency plana magnetron sputtering. Appl Phys Lett, 1995, 67(12):1674~1676
- Doh S J, Park S I, Cho T S, et al. Effects of grid bias on ZnO/α-Al₂O₃(0001) heteroepitaxy · J Vac Sci Technol(A), Sep/Opt 1999, 17(5):3003~3007
- Bachari E M, Baud G, BenAmor S, et al. Structural and optical properties of sputtered ZnO films. Thin Solid Films, 1999, 348(1-2), 165~172
- 13 王金中, 闫玮, 王新强. XRD 对 ZnO 薄膜生长条件和退火工艺的优化. 半导体光电, 2001, 22(3): 169~171

THE CHARACTERISATION OF DC REACTIVE MAGNETRON SPUTTERED ZNO FILMS

Yang Xiaodong¹, Zhang Jingwen², ZouWen², Hou Xun²

- 1 Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069
- 1 Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science, Xi'an 710068 Received date: 2002-01-21

Abstract ZnO films have been prepared by DC reactive magnetron sputtering on different substrates (K⁻⁴ glass, Si(111), Si(001), the effect of O:Ar ratio substrate temprature and annealing process on the quality of ZnO films were investigated. It is found that the crystallinity and orientation degree are improved after annealing process. High-oriented ZnO films with XRD FWHM of 0.1° was obtained at a substrate temperature of 350° C and the ratio of O:Ar is 1:2

Keywords Zinc oxide films, DC reactived magnetron sputering; XRD spectra

Yang Xiaodong was born in 1977, in Shaanxi Province. He graduated from Optronic Technology Dept of Northwest University (NWU) and received the B·S·degree in 1999· He is now a candidate for Master degree in NWU· His primary area of reasearch is the growth and optical characterisation of UV optronic material and low-dimension structures.